The Efficiency of Congo red Dye Removal Using Inorganic Nano-Adsorbent Beidellite and Organic Graphene

Document Type : Original Article

Authors

Department of Soil Science and Engineering, Faculty of Agriculture, Malayer University, Postal Code: 65741-84621, Malayer, Iran

10.30509/jcst.2025.167405.1243

Abstract

This study aimed to evaluate the efficiency of Beidellite and graphene adsorbents in removing Congo red dye from water to enhance water treatment processes. Due to Congo Red's environmental and health risks, its effective removal from water resources is essential. This research examined Beidellite and graphene adsorbents using instrumental analyses such as SEM, FTIR, EDAX, XRD, and zeta potential. The influence of adsorbent concentration, pH, temperature, and contact time on dye adsorption was also investigated. The results demonstrated that graphene achieved a removal efficiency of 87.66 % at a temperature of 50°C and pH=9, while Beidellite exhibited a removal efficiency of 80.78 % at a temperature of 20 °C and pH=6, showing optimal performance in removing Congo red from water. The pseudo-second-order kinetic model and Freundlich isotherm provided the best fit for the experimental data. Besides, thermodynamic parameter analysis revealed that the adsorption process for both graphene and Beidellite was spontaneous, with the reaction being exothermic for Beidellite and endothermic for graphene. The adsorption capacities for graphene and Beidellite were determined to be 5.47 mg/g and 6.73 mg/g, respectively. Desorption experiments indicated a high recovery rate, particularly at low dye concentrations. Therefore, further research on these compounds is recommended, given the high efficiency of Beidellite and graphene adsorbents in removing Congo red and their potential for reuse in water treatment processes.

Keywords

Main Subjects


  1. Aftab RA, Zaidi S, Khan AAP, Usman MA, Khan AY, Chani MTS, et al. Removal of congo red from water by adsorption onto activated carbon derived from waste black cardamom peels and machine learning modeling. Alexandria Eng J. 2023;71:355-69. https://doi.org/10. 1016 /j.aej. 2023.03.055.
  2. Mobarak MB, Pinky NS, Chowdhury F, Hossain MS, Mahmud M, Quddus MS, et al. Environmental remediation by hydroxyapatite: Solid state synthesis utilizing waste chicken eggshell and adsorption experiment with Congo red dye. J Saudi Chem Soc. 2023;27(5):101690. https://doi.org/10. 1016/j.jscs.2023. 101690.
  3. Gonte RR, Shelar G, Balasubramanian K. Polymer–agro-waste composites for removal of Congo red dye from wastewater: adsorption isotherms and kinetics. Desalin Water Treat. 2014;52(40-42):7797-811. https://doi.org/10.1080/ 19443994. 2013.833876.
  4. Sharma A, Siddiqui ZM, Dhar S, Mehta P, Pathania D. Adsorptive removal of congo red dye (CR) from aqueous solution by Cornulaca monacantha stem and biomass-based activated carbon: isotherm, kinetics and thermodynamics. Sep Sci Technol. 2019;54(6):916-29. https://doi.org/10.1080/ 01496395.2018.1524908.
  5. Pandey G, Singh S, Hitkari G. Synthesis and characterization of polyvinyl pyrrolidone (PVP)-coated Fe3O4 nanoparticles by chemical co-precipitation method and removal of Congo red dye by adsorption process. International Nano Letters. 2018;8:111-21. https://doi.org/10.1007/s40089-018-0234-6.
  6. Bamroongwongdee C, Suwannee S, Kongsomsaksiri M. Adsorption of Congo red from aqueous solution by surfactant-modified rice husk: Kinetic, isotherm and thermodynamic analysis. Songklanakarin J Sci Technol. 2019;41(5).
  7. Mondal NK, Kar S. Potentiality of banana peel for removal of Congo red dye from aqueous solution: isotherm, kinetics and thermodynamics studies. Appl Water Sci. 2018;8:1-12. https://doi.org/10.1007/ s13201- 018-0811-x.
  8. Abou Alsoaud MM, Taher MA, Hamed AM, Elnouby MS, Omer AM. Reusable kaolin impregnated aminated chitosan composite beads for efficient removal of Congo red dye: Isotherms, kinetics and thermodynamics studies. Scientific Reports. 2022;12(1):12972. https://doi.org/10.1038/s41598-022-17305-w.
  9. Rani K, Naik A, Chaurasiya RS, Raghavarao K. Removal of toxic Congo red dye from water employing low-cost coconut residual fiber. Water Sci Technol. 2017;75(9):2225-36. https://doi.org/10.2166/wst.2017.109.
  10. Mizhir AA, Abdulwahid AA, Al-Lami HS. Adsorption of carcinogenic dye Congo red onto prepared graphene oxide-based composites. Desalin Water Treat. 2020;202:381-95. https://doi.org/10.5004/dwt.2020.26141.
  11. KOMARNENI S. Hydrothermal crystallization mechanism of sodium beidellite from amorphous gel. J Mater Sci Lett. 1995;14:1770-2. https://doi.org/10.1007/ BF00271003.
  12. Baldermann A, Fleischhacker Y, Schmidthaler S, Wester K, Nachtnebel M, Eichinger S. Removal of barium from solution by natural and iron (III) oxide-modified allophane, beidellite and zeolite adsorbents. Mater. 2020;13(11):2582. https://doi. org/10.3390/ma13112582.
  13. Alizadeh O, Madah Hosseini SH, Porjavadi A. 3D graphene: applications and fabrication methods. Green Chem Sustainable Technol. 2020;2(1):1-15.
  14. Velusamy S, Roy A, Sundaram S, Kumar Mallick T. A review on heavy metal ions and containing dyes removal through graphene oxide‐based adsorption strategies for textile wastewater treatment. Chem Rec. 2021;21(7): 1570-610. https://doi.org/10.1002/tcr.202000153.
  15. Rafi M, Samiey B, Cheng C-H. Study of adsorption mechanism of congo red on graphene oxide/PAMAM nanocomposite. Mater. 2018; 11(4):496. https://doi.org/10. 3390/ma11040496.
  16. Noshadi M, Ghanbarizadeh P. Investigation of Drinking Water Disinfection Performance Using Silver Nanoparticles. 2016;46 (1);83-93 https://ceej.tabrizu.ac.ir/article_4907_10de 04e60e938d7f64.
  17. Suryanarayana C, Norton MG, Suryanarayana C, Norton MG. Practical aspects of X-ray diffraction. X-ray diffraction: A practical approach. 1998; 63-94. https://journals. covenant-university. edu.ng/index.php/cjpls/article/view/96.
  18. Ţucureanu V, Matei A, Avram AM. FTIR spectroscopy for carbon family study. Crit Rev Anal Chem. 2016;46(6):502-520.https://doi.org/10.1080/10408347. 2016. 1157013.
  19. Sotiriou GA, Pratsinis SE. Antibacterial activity of nanosilver ions and particles. Environ Sci Technol. 2010;44(14):5649-54. https://doi.org/10.1021/es101072s.
  20. Bhattacharjee S. DLS and zeta potential–what they are and what they are not? J Controlled Release. 2016;235:337-51. https://doi.org/10.1016/j.jconrel.2016.06.017.
  21. Rouniasi N, Monavvari S, Abdoli M, Baghdadi M, Karbassi A. Optimization process for the removal of heavy metals from aqueous solution using graphene oxide nanosheets and response surface methodology. Appl Ecology Environ Res. 2018;16(5). https://doi.org/10.15666/aeer/1605_67096729.
  22. Hashemian S, Foroghimoqhadam A. Effect of copper doping on CoTiO3 ilmenite type nanoparticles for removal of congo red from aqueous solution. Chem Eng J. 2014;235:299-306. https://doi.org/10.1016/j.cej.2013.08.089.
  23. Azari A, Esrafili A, Ahmadi E, Gholami M. Performance evaluation of magnetized multiwall carbon nanotubes by iron oxide nanoparticles in removing fluoride from aqueous solution. J Mazandaran Uni Med Sci. 2015;25(124):128-42 [In Persian].
  24. Rahmani A, Mousavi HZ, Fazli M. Effect of nanostructure alumina on adsorption of heavy metals. Desalin. 2010;253(1-3):94-100. https://doi.org/10.1016/j.desal.2009.11.027.
  25. Shu J, Wang Z, Huang Y, Huang N, Ren C, Zhang W. Adsorption removal of Congo red from aqueous solution by polyhedral Cu2O nanoparticles: kinetics, isotherms, thermo-dynamics and mechanism analysis. J Alloys Compd. 2015; 633:338-46. https://doi.org/10.1016/j.jallcom. 2015.02. 048.
  26. Yang S-T, Chang Y, Wang H, Liu G, Chen S, Wang Y, et al. Folding/aggregation of graphene oxide and its application in Cu2+ removal. J Colloid Interface Sci. 2010;351(1):122-7. https://doi.org/10.1016/j.jcis.2010.07.042.
  27. Liu Y, Liu K, Zhang L, Zhang Z. Removal of Rhodamine B from aqueous solution using magnetic NiFe nanoparticles. Water Sci Technol. 2015;72(7):1243-9. https://doi.org/10. 2166/wst.2015.319.
  28. Bazan-Wozniak A, Pietrzak R. Adsorption of cationic dye on nanostructured biocarbons: Kinetic and thermodynamic study. Appl Nanosci. 2023;13(10):6787-801. http://dx.doi.org/10. 1007/ s13204-023-02775-9
  29. Zghal S, Jedidi I, Cretin M, Cerneaux S, Abdelmouleh M. Adsorptive removal of Rhodamine B dye using carbon graphite/cnt composites as adsorbents: Kinetics, isotherms and thermodynamic study. Mater. 2023;16(3):1015. https://doi. org/ 10.3390/ma16031015.
  30. He C, Han F, Zhang J, Zhang W. The In 2 SeS/gC 3 N 4 heterostructure: A new two-dimensional material for photo-catalytic water splitting. J Mater Chem C. 2020;8(20): 6923-30. https://doi.org/10.1039/D0TC00852D.
  31. Gharbani P. Isotherm study and surface adsorption kinetics of 4-nitrophenol removal from aqueous solutions on carbon nanofibers. Appl Chem Environ. 2021;12(46):55-61.
  32. Shahbazi A, Niknam M, Amini M. Naphthalene removal from aqueous solutions using Graphene nanosheets: Optimal absorption studies and modeling. Modares Civil Eng J. 2017;17(5):241-51.
  33. Yan H, Wu H, Li K, Wang Y, Tao X, Yang H, et al. Influence of the surface structure of graphene oxide on the adsorption of aromatic organic compounds from water. ACS Appl Mater Interfaces. 2015;7(12):6690-7 https://doi.org/10.1021/ acsami. 5b00053.
  34. Alba MD, Chain P. Interaction between Lu cations and 2: 1 aluminosilicates under hydrothermal treatment. Clays Clay Miner. 2005;53(1):37-44. https://doi.org/10.1346/CCMN. 2005. 0530105.
  35. Wang X, Liu Q, Li M, Chen Z, Cheng X, Wu X, et al. Insights into the thermal safety of ambient pressure dried hydrophobic montmorillonite/silica aerogel composites. Ceram Int. 2024;50(4):6135-45. https://doi.org/10.1016/j. ceramint. 2023.11.321.
  36. Stobinski L, Lesiak B, Kövér L, Tóth J, Biniak S, Trykowski G, et al. Multiwall carbon nanotubes purification and oxidation by nitric acid studied by the FTIR and electron spectroscopy methods. J Alloys Compd. 2010;501(1):77-84. https://doi.org/10.1016/j.jallcom.2010.04.032.
  37. Lesiak B, Zemek J, Houdkova J. Hydrogen detection and quantification at polymer surfaces investigated by elastic peak electron spectroscopy (EPES). Polym. 2008;49(19):4127-32. https://doi.org/10.1016/j.polymer.2008.07.029.
  38. Gengec E. Color removal from anaerobic/aerobic treatment effluent of bakery yeast wastewater by polyaniline/beidellite composite materials. J Environ Chem Eng. 2015;3(4):2484-91. https://doi.org/10.1016/j.jece.2015.09.009.
  39. Salleh MAM, Mahmoud DK, Karim WAWA, Idris A. Cationic and anionic dye adsorption by agricultural solid wastes: a comprehensive review. Desalin. 2011;280(1-3):1-13. https://doi.org/10.1016/j.desal.2011.07.019.
  40. Bagheri M, Nazarpour Najafabadi H. Studies of Isotherm, Kinetics and Thermodynamics of Acid Orange 7 Dye Removal Using Hen Feather and its Carbon. J Color Sci Technol. 2020;14(2):129-41. https://dor.isc.ac/dor/20.1001.1. 17358779. 1399.14.2.5.5.
  41. Kim SH, Kim DS, Moradi H, Chang YY, Yang JK. Rhodamine B and Congo Red Removal from Water Using Biobased Graphene-Like Carbon Adsorbent; Synthesis and Adsorption Mechanisms, Kinetic and Thermodynamic Study. Synthesis and Adsorption Mechanisms, Kinetic and Thermo-dynamic Study. https://dx.doi.org/ 10.2139/ssrn. 4184710.
  42. Bukackova M, Rusnok P, Marsalek R. Mathematical methods in the calculation of the zeta potential of BSA. J Solution Chem. 2018;47:1942-52. https://doi.org/10.1007/s10953-018-0830-0.
  43. Manafi DM, Hadad KM, Azadmard DS, Valizadeh H, Tabatabaei YF. Preparation and some characteristics of nano liposomes containing olive leaf extract. 2018.
  44. Mohammadi A, Daemi H, Barikani M. Fast removal of malachite green dye using novel superparamagnetic sodium alginate-coated Fe3O4 nanoparticles. Int J Biol Macromol. 2014;69:447-55. https://dx.doi.org/10.1016/j.ijbiomac. 2014. 05.0 42.
  45. Temesgen F, Gabbiye N, Sahu O. Biosorption of reactive red dye (RRD) on activated surface of banana and orange peels: economical alternative for textile effluent. Surf Interfaces. 2018;12:151-9. https://doi.org/10.1016/j.surfin.2018.04.007.
  46. Bahramifar N, Golzadeh B, Sedaghat O. Adsorption of malachite green from aqueous solutions by magnetic graphene nanocomposite. J Natural Environ. 2022;75(3):428-44. https://doi.org/10.22059/jne.2022.338363.2386
  47. Monsef Khoshhesab Z, Ayazi Z, Dargahi M. Synthesis of Magnetic Graphene Oxide‎ Nanocomposite for Adsorption Removal of‎ Reactive Red 195: Modelling and‎ Optimizing via Central Composite Design. Int J Nanosci Nanotechnol. 2020; 16(1):35-48.
  48. Sohrabzadeh Dabanlou R, Shahsavari S, Vaziri Yazdi A, Seifkordi A. Adsorption of Indigo Dye Using Magnetic Chitosan-Itaconic Acid Nano Fibers and Investigation of Kinetics and Absorption Isotherm Models. J Color Sci Tech. 2020;14(2):117-28. https://dor.isc.ac/dor/20.1001.1.17358779. 1399. 14.2.4.4 [In Persian].
  49. Ayawei N, Ebelegi AN, Wankasi D. Modelling and interpretation of adsorption isotherms. J Chem. 2017; 2017(1): 3039817. https://doi.org/10.1155/2017/ 3039817.
  50. Jafari N, AHMADI AS. Adsorption of cadmium and lead ions from aqueous solution by brown algae Cystoseira indica. 2014.
  51. Bagherinejad m, Tabatabai Qomsheh SM. Comparison of adsorption isotherms of Langmuir, Freundlich and Temkin in the process of nickel removal from wastewater by surface absorption method by anthracite adsorbent. The 5th National Conference on New Researches in Chemistry. Chem Eng Petroleum. 2016.
  52. Farasati M, Heshmatpoor A. Removal of Total Dissolved Solids from Contaminated Water Using Conocarpus Adsorbent. J Water Wastewater Sci Eng. 2018;3(3):60-7. https://doi.org/10.22112/jwwse.2018.152290.1114.
  53. Salari F, Fekhri M, jaafari A. Investigating surface adsorption isotherm using Freundlich equation in some soils of dry regions of Iran. The first national conference on environment, energy and biodefense. 2013 [In Persian].
  54. Batouti ME, Sadik W, Eldemerdash AG, Hanafy E, Fetouh HA. New and innovative microwave-assisted technology for synthesis of guar gum-grafted acrylamide hydrogel superabsorbent for the removal of acid red 8 dye from industrial wastewater. Polym Bulletin. 2023;80(5):4965-89. https://doi.org/10.1007/s00289-022-04254-7.
  55. Rahimi R, Kerdari H, Rabbani M, Shafiee M. Synthesis, characterization and adsorbing properties of hollow Zn-Fe2O4 nanospheres on removal of Congo red from aqueous solution. Desalin. 2011;280(1-3):412-8. https://doi.org/10.1016/j.desal. 2011.04.073.
  56. Cheng B, Le Y, Cai W, Yu J. Synthesis of hierarchical Ni (OH)2 and NiO nanosheets and their adsorption kinetics and isotherms to Congo red in water. J Hazard Mater. 2011;185(2-3):889-97. https://doi.org/10.1016/j.jhazmat.2010.09.104.
  57. Feng T, Zhang F, Wang J, Wang L. Application of chitosan‐coated quartz sand for Congo red adsorption from aqueous solution. J Appl Polym Sci. 2012;125(3):1766-72. https://doi. org/ 10.1002/app.35670.
  58. Zhu H, Zhang M, Liu Y, Zhang L, Han R. Study of congo red adsorption onto chitosan coated magnetic iron oxide in batch mode. Desalin Water Treat. 2012;37(1-3):46-54. https://doi. org/ 10.1080/19443994.2012.661252.
  59. Lian L, Guo L, Wang A. Use of CaCl2 modified bentonite for removal of Congo red dye from aqueous solutions. Desalin. 2009;249(2):797-801. https://doi.org/10.1016/j.desal.2009. 02. 064.
  60. Tor A, Cengeloglu Y. Removal of congo red from aqueous solution by adsorption onto acid activated red mud. J Hazard Mater. 2006;138(2):409-15. https://doi.org/10.1016/j.jhazmat. 2006. 04.063.
  61. Kumar PS, Ramalingam S, Senthamarai C, Niranjanaa M, Vijayalakshmi P, Sivanesan S. Adsorption of dye from aqueous solution by cashew nut shell: studies on equilibrium isotherm, kinetics and thermodynamics of interactions. Desalin. 2010;261(1-2):52-60. https://doi.org/10.1016/j.desal. 2010.05.032.
  62. Bello OS, Bello OU, Lateef IO. Adsorption characteristics of mango leaf (Mangifera indica) powder as adsorbent for Malachite green dye removal from aqueous solution. Covenant Journal of Physical and Life Sciences. 2014;2(1); 1-13. https://journals.covenantuniversity.edu.ng/index.php/cjpls/ article/view/96.
  63. Wang L, Wang A. Adsorption characteristics of Congo Red onto the chitosan/montmorillonite nanocomposite. J Hazard Mater. 2007;147(3):979-85. https://doi.org/10.1016/j.jhazmat. 2007.01.145.