Effective Removal of Cationic Dye from Aqueous Solution by Modified Hydrochar Derived from Potato Peel Waste

Document Type : Original Article

Authors

Green Carbon Research Center, Chemical Engineering Faculty, Sahand University of Technology, P.O. Box: 513351996, Tabriz, Iran

10.30509/jcst.2024.167377.1239

Abstract

This study investigates synthesizing porous biocarbon materials derived from wet potato peel to remove cationic dyes from aqueous solutions. The influence of wet carbonization process parameters (temperature, residence time) on the synthesis of hydrochar (HC) and the effect of modification process parameters including the type of modifying agent (potassium carbonate and ammonium chloride), mass ratio (1-3), and modification temperature (400-800 °C) on the physicochemical properties of the modified hydrochar (MHC) were investigated. The adsorption performance was examined under varying conditions, including solution pH, isotherms and kinetics adsorption, and the mechanism of methylene blue removal. Results showed that K₂CO₃ significantly enhanced MHC's SBET and adsorption performance due to surface interactions with HC. Maximum adsorption capacities of HC and MHC were achieved as 17.6 mg·g⁻¹ and 84.5 mg·g⁻¹, respectively, under alkaline conditions (pH ≥8). Adsorption data fitted well to the Langmuir isotherm and pseudo-second-order kinetic model (R² > 0.99), indicating chemisorption as the dominant mechanism. Therefore, wet carbonization presents a valuable strategy for minimizing wet organic waste and creating nano-structured carbon adsorbents for environmental applications.  

Keywords

Main Subjects


  1. García A, Gandini A, Labidi J, Belgacem N, Bras J. Industrial and crop wastes: A new source for nanocellulose biorefinery. Ind Crops Prod. 2016;93:26-38. https://doi.org/10.1016/j. indcrop.2016.06.004.
  2. Knezevic D, van Swaaij W, Kersten S. Hydrothermal conversion of biomass. II. Conversion of wood, pyrolysis oil, and glucose in hot compressed water. Ind Eng Chem Res. 2010;49(1):104-112. http://dx.doi.org/10.1021/ie900964u.
  3. Alatzas S, Moustakas K, Malamis D, Vakalis S. Biomass potential from agricultural waste for energetic utilization in Greece. Energ. 2019;12(6):1095. https://doi.org/10.3390/en 12061095.
  4. Abdi J. Prediction of the adsorption amount of azo dyes pollutants from wastewater using porous metal-organic framework adsorbents. J Color Sci Tech. 2022;16(3):267-

    280. https://dorl.net/dor/20.1001.1.17358779.1401.16.3.7.3 [In Persian].

  5. Katheresan V, Kansedo J, Lau SY. Efficiency of various recent wastewater dye removal methods: A review. J Environ Chem Eng. 2018;6(4):4676-4697. https://doi.org/10.1016/j. jece. 2018.06.060
  6. Eyvazi S, Shabani M, Moghimi A. The modification of carboxylated multi-walled carbon nanotube using titanium dioxide for surface adsorption of indigo carmine dye from aqueous environment (thermodynamics and kinetics study). J Color Sci Tech. 2021;15(1):13-28. https://dorl.net/dor/20. 1001. 1.17358779.1400.15.1.2.7 [In Persian].
  7. Ahmed M, Mashkoor F, Nasar A. Development, characterization, and utilization of magnetized orange peel waste as a novel adsorbent for the confiscation of crystal violet dye from aqueous solution. Groundwater Sustainable Dev. 2020;10:100322. https://doi.org/10.1016/j.gsd.2019. 100322.
  8. Patel H, Vashi R. Characterization and treatment of textile wastewater: Elsevier; 2015.
  9. Oladoye PO, Ajiboye TO, Omotola EO, Oyewola OJ. Methylene blue dye: Toxicity and potential elimination technology from wastewater. Results Eng. 2022;16:100678. https://doi.org/10.1016/j.rineng.2022.100678.
  10. Khoshbouy R, Takahashi F, Yoshikawa K. Preparation of high surface area sludge-based activated hydrochar via hydrothermal carbonization and application in the removal of basic dye. Environ Res. 2019;175:457-467. https://doi.org/10. 1016/j.envres.2019.04.002.
  11. Peng C, Zhai Y, Zhu Y, Xu B, Wang T, Li C, et al. Production of char from sewage sludge employing hydrothermal carbonization: char properties, combustion behavior and thermal characteristics. Fuel. 2016;176:110-118. https://doi.org/10.1016/j.fuel.2016.02.068.
  12. Libra JA, Ro KS, Kammann C, Funke A, Berge ND, Neubauer Y, et al. Hydrothermal carbonization of biomass residuals: a comparative review of the chemistry, processes and applications of wet and dry pyrolysis. Biofuels. 2011;2(1):71-106. http://dx.doi.org/10.4155/bfs.10.81.
  13. Mumme J, Eckervogt L, Pielert J, Diakité M, Rupp F, Kern J. Hydrothermal carbonization of anaerobically digested maize silage. Bioresour Technol. 2011;102(19):9255-60. https://doi. org/ 10.1016/j.biortech.2011.06.099. 
  14. Hoekman SK, Broch A, Robbins C, Zielinska B, Felix L. Hydrothermal carbonization (HTC) of selected woody and herbaceous biomass feedstocks. Biomass Convers Biorefin. 2013;3:113-26. https://doi.org/10.1007/s13399-012-0066-y.
  15. Yan W, Hastings JT, Acharjee TC, Coronella CJ, Vásquez VR. Mass and energy balances of wet torrefaction of lignocellulosic biomass. Energy Fuels. 2010;24(9):4738-42. http://dx.doi.org/10.1021/ef901273n.
  16. Sevilla M, Fuertes AB, Mokaya R. High density hydrogen storage in superactivated carbons from hydrothermally carbonized renewable organic materials. Energy Environ Sci. 2011;4(4):1400-1410. http://dx.doi.org/10.1039/C0EE00347F.
  17. Monsalvo VM, Mohedano AF, Rodriguez JJ. Activated carbons from sewage sludge: application to aqueous-phase adsorption of 4-chlorophenol. Desalin. 2011;277(1-3):377-382. https://doi.org/10.1016/j.desal.2011.04.059.
  18. Zhang J-W, Mariska S, Pap S, Tran HN, Chao H-P. Enhanced separation capacity of carbonaceous materials (hydrochar, biochar, and activated carbon) toward potential toxic metals through grafting copolymerization. Sep Purif Technol. 2023; 320:124229. https://doi.org/10.1016/j.seppur.2023.124229.
  19. Nayebi R, Fallah Shojaei A, Pourjamal M. Kinetic and isotherm investigations of methylene blue adsorption from aqueous solution using PVA/AG/CuFe2O4 magnetic nanocomposite. J Color Sci Tech. 2024;17(4):365-380. https:// dorl.net/dor/ 20.1001.1.17358779.1402.17.4.6.1 [In Persian].
  20. Othman NH, Alias NH, Shahruddin MZ, Bakar NFA, Him NRN, Lau WJ. Adsorption kinetics of methylene blue dyes onto magnetic graphene oxide. J Environ Chem Eng. 2018;6(2):2803-2811. https://doi.org/10.1016/j.jece.2018. 04. 024.
  21. Berge ND, Ro KS, Mao J, Flora JR, Chappell MA, Bae S. Hydrothermal carbonization of municipal waste streams. Environ Sci Tech. 2011;45(13):5696-703. http://dx.doi. org/ 10. 1021/es2004528.
  22. Lee JH, Heo YJ, Park SJ. Effect of silica removal and steam activation on extra-porous activated carbons from rice husks for methane storage. Int J Hydrogen Energy. 2018; 43(49):22377-84. https://doi.org/10.1016/j.ijhydene.2018. 10. 039.
  23. Ideta K, Kim D-W, Kim T, Nakabayashi K, Miyawaki J, Park J-I, et al. 19F ex situ solid-state NMR study on structural differences in pores of activated carbon series derived from chemical and physical activation processes for EDLCs. J Phys Chem C. 2020;124(23):12457-12465. http://dx.doi.org/10. 1021/acs. jpcc.0c02106.
  24. Ronix A, Pezoti O, Souza LS, Souza IP, Bedin KC, Souza PS, et al. Hydrothermal carbonization of coffee husk: Optimization of experimental parameters and adsorption of methylene blue dye. J Environ Chem Eng. 2017;5(5):4841-4849. https://doi.org/10.1016/j.jece.2017.08.035.
  25. Tawatbundit K, Mopoung S. Activated carbon preparation from sugarcane leaf via a low temperature hydrothermal process for aquaponic treatment. Mater. 2022;15(6):2133. https://doi.org/10.3390/ma15062133.
  26. Benstoem F, Becker G, Firk J, Kaless M, Wuest D, Pinnekamp J, et al. Elimination of micropollutants by activated carbon produced from fibers taken from wastewater screenings using hydrothermal carbonization. J Environ Manage. 2018;211:278-86. https://doi.org/10.1016/j.jenvman. 2018.01.065.
  27. Md Salim R, Asik J, Sarjadi MS. Chemical functional groups of extractives, cellulose and lignin extracted from native Leucaena leucocephala bark. Wood Sci Technol. 2021; 55:295-313. https://doi.org/10.1007/s00226-020-01258-2.
  28. Yakaboylu GA, Jiang C, Yumak T, Zondlo JW, Wang J, Sabolsky EM. Engineered hierarchical porous carbons for supercapacitor applications through chemical pretreatment and activation of biomass precursors. Renewable Energy. 2021;163:276-87. https://doi.org/10.1016/j.renene.2020. 08. 092.
  29. Huang C, Yu C, Wang G, Zhang J, Ning X, Wang C. Comparison of structural characteristics and combustibility analysis about hydrochar and pyrochar. J Therm Anal Calorim. 2022;147(19):10509-10523. https://doi.org/10.1007/ s10973-022-11221-x.
  30. Ghorbani F, Younesi H. Biosorption of cadmium (II) ions by Saccharomyces cerevisiae biomass from aqueous solutions. J Water Wastewater. 2008;68(4):33-9. 
  31. Cheu SC, Kong H, Song ST, Saman N, Johari K, Mat H. High removal performance of dissolved oil from aqueous solution by sorption using fatty acid esterified pineapple leaves as novel sorbents. RSC Adv. 2016;6(17):13710-22. http://dx. doi.org/10.1039/C5RA22929D.
  32. Fan S, Wang Y, Wang Z, Tang J, Tang J, Li X. Removal of methylene blue from aqueous solution by sewage sludge-derived biochar: Adsorption kinetics, equilibrium, thermodynamics and mechanism. J Environ Chem Eng. 2017;5(1):601-11. https://doi.org/10.1016/j.jece.2016.12.019.
  33. Shikuku VO, Mishra T. Adsorption isotherm modeling for methylene blue removal onto magnetic kaolinite clay: a comparison of two-parameter isotherms. Appl Water Sci. 2021;11(6):103. https://doi.org/10.1007/s13201-021-01440-2.
  34. Akbari A, Abbasi H, Shafiee M, Baniasadi H. Synergistic adsorption of methylene blue with carrageenan/hydrochar-derived activated carbon hydrogel composites: insights and optimization strategies. Int J Biol Macromol. 2024; 265:130750. https://doi.org/10.1016/j.ijbiomac.2024.130750.
  35. Tu W, Liu Y, Xie Z, Chen M, Ma L, Du G, et al. A novel activation-hydrochar via hydrothermal carbonization and KOH activation of sewage sludge and coconut shell for biomass wastes: Preparation, characterization and adsorption properties. J Colloid Interface Sci. 2021;593:390-407. https://doi.org/10.1016/j.jcis.2021.02.133
  36. Li H, Hou R, Chen Y, Chen H. Removal of hexavalent chromium from aqueous solutions using sulfonated peat. Water. 2019;11(10):1980. https://doi.org/10.3390/w11101980. 
  37. Kousar S, Fan M, Javed K, Rashid M, Zhang S, Hu X. Hydrothermal carbonization of fruit peels of varied origin forms hydrochar of distinct capability for adsorption of methylene blue. J Water Process Eng. 2024;65:105799. https://doi.org/10.1016/j.jwpe.2024.105799.
  38. Tran TH, Le AH, Pham TH, Nguyen DT, Chang SW, Chung WJ, et al. Adsorption isotherms and kinetic modeling of methylene blue dye onto a carbonaceous hydrochar adsorbent derived from coffee husk waste. Sci Total Environ. 2020;725:138325. https://doi.org/10.1016/j.scitotenv. 2020. 138325.
  39. Islam MT, Chambers C, Reza MT. Effects of process liquid recirculation on material properties of hydrochar and corresponding adsorption of cationic dye. J Anal Appl Pyrolysis. 2022;161:105418. https://doi.org/10.1016/j.jaap. 2021. 105418.
  40. Algethami JS, Alhamami MA, Alqadami AA, Melhi S, Seliem AF. Magnetic hydrochar grafted-chitosan for enhanced efficient adsorption of malachite green dye from aqueous solutions: Modeling, adsorption behavior, and mechanism analysis. Int J Biol Macromol. 2024;254:127767. https://doi.org/10.1016/j.ijbiomac.2023.127767.
  41. Madduri S, Elsayed I. Novel oxone treated hydrochar for the removal of Pb (II) and methylene blue (MB) dye from aqueous solutions. Chemosphere. 2020;260:127683. https://doi.org/10.1016/j.chemosphere.2020.127683.