Investigating the Effect of Various Precursors in the Synthesis and Improvement of the Photocatalytic Performance of Graphite Carbon Nitride in the Degradation of Rhodamine B Dye Under Visible Light

Document Type : Original Article

Authors

Environmental Sciences Research Institute, Shahid Beheshti University, P.O. Code: 1983969411, Tehran, Iran

10.30509/jcst.2024.167291.1224

Abstract

Photocatalytic processes using solar energy are one of the new chemical purification methods in the purification of colored organic pollutants, attracting much attention. Graphite carbon nitride photocatalyst (g-C3N4) was synthesized using the thermal polymerization method and using (single or combined) melamine, thiourea, and ammonium chloride precursors. Synthesized photocatalysts based on g-C3N4 were analyzed to investigate their structure, morphology, and properties using XRD, FT-IR, SEM, EDX, BET, PL, and DRS analyses and to degrade the cationic dye Rhodamine B (RhB) used. The results of the experiments showed that the graphite carbon nitride synthesized with the combined precursor of melamine, thiourea, and ammonium chloride (MTA) with a dose of 0.2 g/l and a color concentration of 50 mg/l has the highest performance on the degradation of RhB color and after 2 hours, caused 100% decolorization of the dye solution. Also, the photocatalytic efficiency of MTA in the degradation of RhB dye was almost constant in five consecutive cycles. In addition, according to the results of the trapping experiments, the active species of superoxide radical (O2-) was the dominant species for the degradation process of RhB. Hence, MTA can be considered an efficient catalyst due to its advantages, such as one-step synthesis, effective photocatalytic performance, and reusability.

Keywords

Main Subjects


  1. Taghipour S, Ataie-Ashtiani B, Hosseini SM, Yeung KL. Graphitic carbon nitride-based composites for photocatalytic abatement of emerging pollutants.  Nanostructured Carbon Nitrides for Sustainable Energy and Environmental Applications: Elsevier; 2022. p. 175-214. https://doi.org/10. 1016/B978-0-12-823961-2.00001-X.
  2. Ahmadpur M, Gokasar I. Spatial analysis and evaluation of road traffic safety performance indexes across the provinces of Turkey from 2015 to 2019. Int J Inj control Saf Promot. 2021;28(3):309-24. https://doi.org/10.1080/17457300.2021. 1925923.
  3. Wang J, Liang Y, Wang Z, Huo B, Liu C, Chen X, et al. High efficiently degradation of organic pollutants via low-speed water flow activation of Cu2O@ MoS2/PVDF modified pipeline with piezocatalysis performance. Chem Eng J. 2023;458:141409. https://doi.org/10.1016/j.cej.2023.
  4. Wei Z, Cai C, Fu Y. Photothermal bio-based membrane via spectrum-tailoring and dual H-bonding networks strategies for seawater treatment and crude oil viscosity reduction. Energy Convers Manage. 2022;260:115645. https://doi.org/10.1016/ j.enconman.2022.
  5. Gu P, Liu S, Cheng X, Zhang S, Wu C, Wen T, Wang X. Recent strategies, progress, and prospects of two-dimensional metal carbides (MXenes) materials in wastewater purification: A review. Sci Total Environ. 2023:169533. https://doi.org/ 10.1016/j.scitotenv.2023.
  6. Jia M, Liu C, Dang Z, Zhao X, Chen K. Efficient Adsorption and Mechanism of Organic Dyes on Freeze‐Dried Graphene. ChemistrySelect. 2023;8(19):e202204569. https://doi.org/10. 1002/slct.
  7. Arévalo-Fester J, Briceño A. Insights into selective removal by dye adsorption on hydrophobic vs multivalent hydrophilic functionalized MWCNTs. ACS Omega. 2023;8(12), 11233-11250. https://doi.org/10.1021/acsomega.2c08203.
  8. Khezami L, Bessadok A, Aissa MAB, Ahmed AH, Modwi A, Benhamadi N, Assadi AA. Revolutionizing dye removal: g-C3N4-Modified ZnO nanocomposite for exceptional adsorption of basic fuchsin dye. Inorg Chem Commun. 2024;164:112413. https://doi.org/10.1016/j.inoche.2024.
  9. Sachin, Pramanik BK, Gupta H, Kumar S, Tawale JS, Shah K, et al. Development of a ZnOS+ C composite as a potential adsorbent for the effective removal of fast green dye from real wastewater. ACS omega. 2023;8(10):9230-8. https://doi. org/10.1021/acsomega.2c06873.
  10. Dai M, Yang YJ, Sarkar S, Ahn KH. Strategies to convert organic fluorophores into red/near-infrared emitting analogues and their utilization in bioimaging probes. Chem Soc Rev. 2023:https://doi.org/10.1039/D3CS00475A.
  11. Khan Z, Sekar N. Deep Red to NIR Emitting Xanthene Hybrids: Xanthene‐Hemicyanine Hybrids and Xanthene‐Coumarin Hybrids. Chem Select. 2023;8(5):e202203377. https://doi.org/10.1002/slct.
  12. Khan Z, Sekar N. Far-red to NIR emitting xanthene-based fluorophores. Dyes Pigm. 2023;208:110735. https://doi.org/ 10.1016/j.dyepig.2022.
  13. Xi M, Cui K, Cui M, Ding Y, Guo Z, Chen Y, et al. Enhanced norfloxacin degradation by iron and nitrogen co-doped biochar: Revealing the radical and nonradical co-dominant mechanism of persulfate activation. Chem Eng J. 2021; 420:129902. https://doi.org/10.1016/j.cej.2021.
  14. He J, Xiao Y, Tang J, Chen H, Sun H. Persulfate activation with sawdust biochar in aqueous solution by enhanced electron donor-transfer effect. Sci Total Environ. 2019;690:768-77. https://doi.org/10.1016/j.scitotenv. 2019.07. 043.
  15. Kamaraj M, Babu PS, Shyamalagowri S, Pavithra M, Aravind J, Kim W, Govarthanan M. β-cyclodextrin polymer composites for the removal of pharmaceutical substances, endocrine disruptor chemicals, and dyes from aqueous solution-A review of recent trends. J Environ Manag. 2024;351:119830. https://doi.org/10.1016/j.jenvman.2023.
  16. Fathima JB, Pugazhendhi A, Oves M, Venis R. Synthesis of eco-friendly copper nanoparticles for augmentation of catalytic degradation of organic dyes. J Mol Liq. 2018;260:1-8. https://doi.org/10,1016/j.molliq.2018.03.033.
  17. Rafique M, Shafiq F, Gillani SSA, Shakil M, Tahir MB, Sadaf I. Eco-friendly green and biosynthesis of copper oxide nanoparticles using Citrofortunella microcarpa leaves extract for efficient photocatalytic degradation of Rhodamin B dye form textile wastewater. Optik. 2020;208:164053. https://doi. org/10.1016/j.ijleo.2019.
  18. Hamdaoui O. Intensification of the sorption of Rhodamine B from aqueous phase by loquat seeds using ultrasound. Desalin. 2011;271(1-3):279-86. https://doi.org/10.1016/j. desal. 2010.12.043.
  19. Yang C, Wu S, Cheng J, Chen Y. Indium-based metal-organic framework/graphite oxide composite as an efficient adsorbent in the adsorption of rhodamine B from aqueous solution. J Alloys and Compd. 2016;687:804-812. https://doi.org/10. 1016/j.jallcom.2016.06.173.
  20. Liu H, Ren X, Chen L. Synthesis and characterization of magnetic metal–organic framework for the adsorptive removal of Rhodamine B from aqueous solution. J Ind Eng Chem. 2016;34:278-85. https://doi.org/10.1016/j.jiec.2015. 11.020.
  21. Ardani MR, Pang AL, Pal U, Haniff MASM, Ismail AG, Hamzah AA, et al. Ultrasonic-assisted of TiO2-MWCNT nanocomposite with advanced photocatalytic efficiency for elimination of dye pollutions. Diamond Relat Mater. 2023;137:110066. https://doi.org/10.1016/j.diamond.2023.
  22. Pare B, Nagraj G, Solanki VS, Albakri GS, Alreshidi MA, Abbas M, et al. Eco-friendly LEDs radiation-assisted photocatalytic mineralization of toxic azure B dye using Bi2MoZnO7 nanocomposite. Inorg Chim Acta. 2024; 568:122109. https://doi.org/10.1016/j.ica.2024.
  23. Zhang P, Wang H, Lai Y, Xu Y, Chen L, Wu Q, et al. Synergistic Co/S co-doped CeO2 sulfur-oxide catalyst for efficient catalytic reduction of toxic organics and heavy metal pollutants under dark conditions. J Water Process Eng. 2024;58:104820. https://doi.org/10.1016/j.jwpe.2024.
  24. Jiang L, Yuan X, Pan Y, Liang J, Zeng G, Wu Z, Wang H. Doping of graphitic carbon nitride for photocatalysis: a reveiw. Appl Catalysis B: Environ. 2017;217:388-406. https://doi.org/10.1016/j.apcatb.2017.06.003.
  25. Ohno T, Mitsui T, Matsumura M. Photocatalytic activity of S-doped TiO2 photocatalyst under visible light. Chem lett. 2003;32(4):364-5. https://doi.org/10.1246/cl.2003.364.
  26. Wang X, Maeda K, Thomas A, Takanabe K, Xin G, Carlsson JM, et al. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nature mater. 2009;8:76-80. https://doi.org/10.1038/nmat2317.
  27. Balakrishnan A, Chinthala M. Effective sequestration of tetracycline from aqueous streams using metal-free chemically functionalized porous g-C3N4. Environ Pollut. 2023;333:122057. https://doi.org/10,1016/j.envpol. 2023.
  28. Balakrishnan A, Chinthala M, Polagani RK, Vo D-VN. Removal of tetracycline from wastewater using g-C3N4 based photocatalysts: a review. Environ Res. 2023;216:114660. https://doi.org/10.1016/j.envres.2022.
  29. Kong W, Xing Z, Fang B, Cui Y, Li Z, Zhou W. Plasmon Ag/ Na-doped defective graphite carbon nitride/NiFe layered double hydroxides Z-scheme heterojunctions toward optimized photothermal-photocatalytic-Fenton performance. Appl Catal B: Environ. 2022;304:120969. https://doi.org/ 10. 1016/j.apcatb.2021.
  30. Balakrishnan A, Chinthala M. Comprehensive review on advanced reusability of g-C3N4 based photocatalysts for the removal of organic pollutants. Chemosphere. 2022; 297: 134190. https://doi.org/10.1016/j. chemosphere. 2022.
  31. Takanabe K, Kamata K, Wang X, Antonietti M, Kubota J, Domen K. Photocatalytic hydrogen evolution on dye-sensitized mesoporous carbon nitride photocatalyst with magnesium phthalocyanine. Phys Chem Chem Phys. 2010; 12(40):13020-13025. https://doi.org/10.1039/ C0CP00611D.
  32. Dong F,WuL,Sun Y, Fu M, Wu Z, Lee S. Efficient synthesis of polymeric gC3N4 layered materials as novel efficient visible light driven photocatalysts. J Mater Chem. 2011; 21(39):15171-15174.https://doi.org/10.1039/C1JM2844B.
  33. Liu J, Zhang Y, Lu L, Wu G, Chen W. Self-regenerated solar-driven photocatalytic water-splitting by urea derived graphitic carbon nitride with platinum nanoparticles. Chem 

    Commun. 2012;48(70):8826-8828. https://doi.org/10.1039/ C2CC33644H.

  34. Zhang Y, Liu J, Wu G, Chen W. Porous graphitic carbon nitride synthesized via direct polymerization of urea for efficient sunlight-driven photocatalytic hydrogen production. Nanoscale. 2012;4(17):5300-5303. https://doi.org/10.1039/ C2NR30948C.
  35. Hong J, Xia X, Wang Y, Xu R. Mesoporous carbon nitride with in situ sulfur doping for enhanced photocatalytic hydrogen evolution from water under visible light. J Mater Chem. 2012;22(30):15006-15012. https://doi. org/ 10. 1039/ C2JM32053C.
  36. Yan S, Li Z, Zou Z. Photodegradation of rhodamine B and methyl orange over boron-doped g-C3N4 under visible light irradiation. Langmuir. 2010;26(6):3894-901. https://doi.org/ 10.1021/la904023j.
  37. Wang Y, Wang Z, Muhammad S, He J. Graphite-like C3N4 hybridized ZnWO 4 nanorods: Synthesis and its enhanced photocatalysis in visible light. Cryst Eng Comm. 2012; 14(15):5065-70. https://doi.org/10.1039/C2CE25517K.
  38. Zhang G, Zhang J, Zhang M, Wang X. Polycondensation of thiourea into carbon nitride semiconductors as visible light photocatalysts. J Mater Chem. 2012;22 (16): 8083-8091. https://doi.org/10.1039/C2JM00097K.
  39. Zhang J, Zhang M, Sun RQ, Wang X. A facile band alignment of polymeric carbon nitride semiconductors to construct isotype heterojunctions. Angew Chem Int Ed. 2012;51(40):10145-9. http://dx.doi. org/ 10.1002% 2Fanie. 201205333.
  40. Thomas A, Fischer A, Goettmann F, Antonietti M, Müller J-O, Schlögl R, Carlsson JM. Graphitic carbon nitride materials: variation of structure and morphology and their use as metal-free catalysts. J Mater Chem. 2008;18(41):4893-908. https://doi.org/10.1039/B800274F.
  41. Fan Q, Liu J, Yu Y, Zuo S, Li B. A simple fabrication for sulfur doped graphitic carbon nitride porous rods with excellent photocatalytic activity degrading RhB dye. Appl Surf Sci. 2017;391:360-8. https://doi.org/10.1016/ j.apsusc. 2016.04.055.
  42. An TD, Phuc NV, Tri NN, Phu HT, Hung NP, Vo V, editors. Sulfur-doped g-C3N4 with enhanced visible-light photo-catalytic activity. Appl Mech Mater. 2019: Trans Tech Publ.
  43. Lan L, Li Y, Zeng M, Mao M, Ren L, Yang Y, et al. Efficient UV–vis-infrared light-driven catalytic abatement of benzene on amorphous manganese oxide supported on anatase TiO2 nanosheet with dominant {001} facets promoted by a photo-thermocatalytic synergetic effect. Appl Catal B. 2017; 203:494-504. https://doi.org/10.1016/j.apcatb.2016.10.047.
  44. Dong F, Wang Z, Sun Y, Ho W-K, Zhang H. Engineering the nanoarchitecture and texture of polymeric carbon nitride semiconductor for enhanced visible light photocatalytic activity. J Colloid Interface Sci. 2013; 401:70-9. https://doi. org/10.1016/j.jcis.2013.03,034.
  45. Chen Y, Li J, Hong Z, Shen B, Lin B, Gao B. Origin of the enhanced visible-light photocatalytic activity of CNT modified gC3N4 for H2 production. Phys Chem Chem Phys. 2014;16(17):8106-13. https://doi.org/10.1039/C3CP55191A.
  46. Zhao H, Yu H, Quan X, Chen S, Zhang Y, Zhao H, Wang H. Fabrication of atomic single layer graphitic-C3N4 and its high performance of photocatalytic disinfection under visible light irradiation. Appl Catal B. 2014;152:46-50. https://doi.org/10. 1016/j.apcatb.2014.01.023.
  47. Li X-H, Tang Z-X, Zhang X-Z. Molecular structure, IR spectra of 2-mercaptobenzothiazole and 2-mercaptobenzo-xazole by density functional theory and ab initio Hartree–Fock calculations. Spectrochim Acta Part A. 2009;74(1):168-73. https://doi. org/ 10.1016/j.saa.2009.05.026.
  48. Xiao X, Wang Y, Bo Q, Xu X, Zhang D. One-step preparation of sulfur-doped porous gC3N4 for enhanced visible light photocatalytic performance.  Dalton Trans. 2020;49(24):8041-50.https://doi.org/10.1039/D0DT00299B.
  49. Goettmann F, Fischer A, Antonietti M, Thomas A. Chemical synthesis of mesoporous carbon nitrides using hard templates and their use as a metal‐free catalyst for Friedel–Crafts reaction of benzene. Angew Chem Int Ed. 2006;45(27):4467-71. https://doi.org/10.1002/anie.200600412.
  50. Dang Y, Hu Q, He P, Ren T. Tailoring the ratio of ammonium chloride and graphitic carbon nitride for high photocatalytic activity. J Mol Struct. 2020;1209:127961. https://doi.org/10. 1016/j.molstruc.2020.
  51. Gao Y, Li S, Li Y, Yao L, Zhang H. Accelerated photocatalytic degradation of organic pollutant over metal-organic framework MIL-53 (Fe) under visible LED light mediated by persulfate. Appl Catal B. 2017;202:165-74. https://doi.org/10.1016/j.apcatb.2016.09.005.
  52. Wang X, Feng S, Zhao W, Zhao D, Chen S. Ag/polyaniline heterostructured nanosheets loaded with gC3N4 nanoparticles for highly efficient photocatalytic hydrogen generation under visible light. New J Chem. 2017;41(17):9354-60. https://doi. org/ 10.1039/C7NJ01903C.
  53. Liu G, Qiao X, Gondal M, Liu Y, Shen K, Xu Q. Comparative study of pure g-C3N4 and sulfur-doped g-C3N4 catalyst performance in photo-degradation of persistent pollutant under visible light. J Nanosci Nanotechnol. 2018;18(6):4142-54. https://doi.org/10.1166/jnn.2018.15243.
  54. Zhao Y, Wang L, Malpass-Evans R, McKeown NB, Carta M, Lowe JP, et al. Effects of g-C3N4 heterogenization into intrinsically microporous polymers on the photocatalytic generation of hydrogen peroxide. ACS Applied Materials & Interfaces. 2022;14(17):19938-48. https://doi.org/10.1021/ acsami.1c23960.
  55. Konstantinou IK, Albanis TA. TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: a review. Appl Catal B. 2004; 49(1):1-14. https://doi.org/0.1016/j. apcatb. 2003.11.010.
  56. Alaton IA, Balcioglu IA. Photochemical and heterogeneous photocatalytic degradation of waste vinylsulphone dyes: a case study with hydrolyzed Reactive Black 5. J Photochem Photobiol A. 2001;141(2-3):247-54. https://doi.org/10.101/ 6S0-6030(01)00440-3.
  57. Daneshvar N, Salari D, Khataee A. Photocatalytic degradation of azo dye acid red 14 in water: investigation of the effect of operational parameters. J Photochem Photobiol A. 2003; 157(1):111-6. https://doi.org/10.1016/S0-6030(03) 00015-7.
  58. Grzechulska J, Morawski AW. Photocatalytic decomposition of azo-dye acid black 1 in water over modified titanium dioxide. Appl Catal B. 2002;36(1):45-51. https://doi.org/ 10.1016/S0926-33732-00275(01)2 .
  59. Cater SR, Stefan MI, Bolton JR, Safarzadeh-Amiri A. UV/H2O2 treatment of methyl tert-butyl ether in contaminated waters. Environ Sci Technol. 2000;34(4):659-62. https://doi. org/ 10.1021/es9905750.
  60. Malato S, Blanco J, Richter C, Braun B, Maldonado M. Enhancement of the rate of solar photocatalytic mineralization of organic pollutants by inorganic oxidizing species. Appl Catal B. 1998;17(4):347-56. https://doi.org/10.1016/S0926-3373(98)00019-8.
  61. Wang K, Li Q, Liu B, Cheng B, Ho W, Yu J. Sulfur-doped g-C3N4 with enhanced photocatalytic CO2-reduction perfor-mance. Appl Catal B. 2015;176:44-52. https://doi.org/ 10. 1016/j.apcatb.2015.03.045.
  62. Kadam AN, Moniruzzaman M, Lee S-W. Dual functional S-doped g-C3N4 pinhole porous nanosheets for selective fluorescence sensing of Ag+ and visible-light photocatalysis of dyes. Molecules. 2019;24(3):450. https://doi.org/10. 3390/ molecules24030450.