Evaluation of Printability Indexes of Testliner Paper Sized by The Extracted Lignin of Soda Pulping

Document Type : Original Article

Authors

1 Department of Natural Resources, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, P.O. Box: 56199-13131, Ardabil, Iran

2 Department of Paper Science and Engineering, Faculty of Wood and Paper Engineering, Gorgan University of Agricultural Sciences and Natural Resources, P.O. Box: 49138-15739, Gorgan, Iran

3 Tehran University, Faculty of Natural Resources, P.O. Box: 77871-31587, Karaj, Iran

4 Department of Printing Science and Technology, Color Physics Faculty, Institute for Color Science and Technology, P.O. Box: 16688-36471, Tehran, Iran

5 Bioprocess Technology Department, University of Borås, Borås, P.O. Box: S-501 90, Borås, Sweden

10.30509/jcst.2024.167278.1223

Abstract

In this research, it was aimed to investigate the production of a sizing agent based on lignin extracted from the soda black liquor. The crude lignin was subjected to a chemical modification process, i.e., sulfomethylation, in order to improve its reactivity ratio and to increase its solubility in water. Unmodified/ sulfomethylated lignin were mixed with starch and then, applied on the test liner papers by surface. The SEM micrograph of the treated papers surface indicated capability of soda lignin to fill the pores and to prepare for a homogeneous film on the paper surface. The roughness increased by 20 % in case of a paper treated with unmodified lignin. The lightness decreased for the paper sized with unmodified lignin compared to the control paper. The results indicated the positive effect of the chemical modification and or starch usage in improvement of the lightness and yellowness. The optical density measurement indicated higher relative values for lignin-based solutions either unmodified or modified ones.

Keywords

Main Subjects


  1. Amjath Khan FA, Zahir H, S.N.H Noorul H. Carboxymethyl lignin bio polymer and microcrystalline cellulose as a surface coating additive to improve the properties of paper on starch surface sizing. Int J Res Advent Technol.2018;6(6):1282-1289.
  2. Chen K, Bio-renewable fibers extracted from lignin/ polylactide (PLA) blend [Master thesis]. [Iowa]: Iowa State University; 2012.
  3. Dafinov A, Font J, Garcia-Valls R. Processing of black liquors by UF/NF ceramic membranes. Desalin. 2005; 173(1):83-90. https://doi.org/10.1016/j.desal.2004.07.044.
  4. Dai L, Liu R, Hu L, Zou, Z, Chuanling S. Lignin nanoparticle as a novel green carrier for the efficient delivery of resveratrol, ACS Sustainable Chem Eng. 2017;5(9): 8241−8249. https://doi.org/10.1021/acssuschemeng.7b01903.
  5. Gao Y, Qu W, Liu Y, Hu H, E, W Cochran E, Bai X. Agricultural residue-derived lignin as the filer of polylactic acid composites and the effect of lignin purity on the composite. J Appl Polym Sci. 2019;136(35):1-9. https://doi. org/10.1002/app.47915.
  6. Ghatak HR. Spectroscopic comparison of lignin separated by electrolysis and acid precipitation of wheat straw soda black liquor. Ind Crops Prod. 2008;28(2):206-212. https://doi.org/ 10.1016/j.indcrop.2008.02.011.
  7. Han K M, Cho B. Effect of surface sizing of black liquor on properties of corrugated medium. Bioresour.2016;11(4):10391 -10403. https://doi.org/10.15376/biores.11.4.10391-10403.
  8. Hagiopol C, Johnson J W. Chemistry of modern papermaking. 1st Ed. CRC press; 2012.
  9. Hambardzumyan A, Foulon L, Bercuc NB, Pernes M, Maigret J E, Molinari M, Chabbert B, Aguié-Béghin V. Organosolv lignin as natural grafting additive to improve the water resistance of films using cellulose nanocrystals. Chem Eng J. 2015;264:780–788. https://doi.org/10.1016/j.cej.2014. 12.004.
  10. Holik H. Handbook of paper and board. 2nd ed. Wiley-VCH; 2013.
  11. Huang G, Shi J X, Langrish T A. A new pulping process for wheat straw to reduce problems with the discharge of black liquor. Bioresour Technol. 2007;98:2829-2835. https://doi. org/10.1016/j.biortech.2006.09.029. 
  12. Kadla J F, Kubo S. Lignin-basedpolymerblends: analysis of intermolecular interactions in lignin–synthetic polymer blends. Composites, Part A, Appl. Sci. Manuf.2004;35 (3): 395-400. https://doi.org/10.1016/j.compositesa.2003. 09. 019. 
  13. Kaewtatip K, Thongmee J. Effect of Kraft lignin and esterified lignin on the properties of thermoplastic starch. Material and design. 2013;49:701-704. https://doi.org/10. 1016/j.matdes.2013.02.010.
  14. Kopacic S, Ortner A, Guebitz G., Kraschitzer T, Leitner J, Bauer W. Technical lignins and their utilization in the surface sizing of paperboard. Ind Eng Chem Res.2018; 57(18):6284-6291. https://doi.org/10.1021/acs.iecr.8b00974.  
  15. Kreetachat T, Damrongsri M, Punsuwon V, Vaithanomsat P, Chiemchaisri C, Chomsurin C. Effects of ozonation process on lignin-derived compounds in pulp and paper mill effluents. J Hazard Mater. 2007;142(1-2):250-257. https://doi.org/10. 1016/j.jhazmat.2006.08.011.  
  16. Macias A, Goni S. Characterization of admixture as plasticizer or superplasticizer by deflocculation test. ACI Mater J. 1999;96(1):40–46. 
  17. Meister JJ. Modification of lignin. J Macromol Sci Polym Rev. 2002; 42(2): 235-289. https://doi.org/10.1081/MC-120004764. 
  18. Mousavi SN, Nazarnezhad N, Asadpour G, Kumar RS, Zamani A. Ultrafine friction grinding of lignin for development of starch bio composite films. Polym. 2021;13(12): https://doi.org/10/3390/polym13122024.
  19. Paul J, Inwood W. Sulfonation of kraft lignin to water-soluble value-added products. Bioresour. 2014;13(1):53-70. https://doi.org/10.3390/ polym13122024. 
  20. Richardson G, Sun Y, Langton M, Hermansson A M. Effects of Ca and Na lignosulfonate on starch gelatinization and network formation. Carbohydr Polym. 2004:57:369-377.
  21. Rozman HD, Tan KW, Kumar RN, Abubakar A, Mohd IZA, Ismail H. The effect of lignin as a compatibilizers on the physical properties of coconut fiber-polypropylene composites. Eur Polym J. 2000;36(7):1483-1494. 
  22. Spiridon I, Teaca CA, Bodirlau R. Preparation and characterization of adipic acid- modified starch micro-particles/ plasticized starch composite films reinforced by lignin. J Mater Sci. 2011;46(2):3241–3251. https://doi.org/ 10.1007/s10853-010-5210-0. 
  23. Telysheva G, Dizhbite T, Paegle E, Shapatin A, Demidor I. Surface-active properties of hydrophobized derivatives of lignosulfonates: Effect of structure of organosilicon modifier. J Appl Polym Sci. 2001;82(4):1013–1020.
  24. Theng D, Mansouri N, Arbat G, Ngo B, Delgado- Aguilar M, Pelach M A, Fullana-i-Palmer P, Mutje, P. Fiberboards Made from Corn Stalk Thermomechanical Pulp and Kraft Lignin as a Green Adhesive. BioResources. 2017;12(2):2379−2393. https://doi.org/10.15376/biores.12.2.2379-2393.
  25. Vijayalakshmi PR, Rajalakshmi R, Subhashini S. Inhibitory action of borassus flabellifer linn. (Palmyra Palm) Shell Extract on Corrosion of Mild Steel in Acidic Media, E-J Chem. 2010;7(3):1055-1065. https://doi.org/10.1155/2010/ 453694. 
  26. Vishtal AG, Kraslawski A. Challenges in industrial applications of technical lignins. BioResources. 2011;6(3): 3547-3568.
  27. Wang M, Sjöholm E, Li J. Fast and reliable quantification of lignin reactivity via reaction with dimethylamine and formaldehyde (Mannich reaction). Holzforsch. 2017;71(1):27-34. https://doi.org/10.1515/hf-2016-0054. 
  28. Whalen D M. A Simple Method for precipitating easily filterable Acid Lignin from Kraft Black Liquor. Tappi. 1975;58(5):110-112.
  29. Zeng H. Polymer Adhesion, Friction and Lubrication. 1st ed. John Wiley & Sons, Incorporated, Somerset, US. 2013.
  30. Zhang YH. Reviving the carbohydrate economy via multi-product lignocelluloses biorefineries. Ind Microbiol Biotech. 2008;35(3):367-375. https://doi.org/ 10.1007/s10295-007-0293-6.