Effective Removal of Acid Blue 113 Dye Using Magnesium Oxide-based Nanocatalyst in Photocatalytic Ozonation Process

Document Type : Original Article

Authors

Department of Applied Chemistry, Faculty of Chemistry, University of Guilan, Rasht 41996-13776, Iran

10.30509/jcst.2024.167311.1227

Abstract

In this study, photocatalytic ozonation process was used to remove Acid Blue 113 dye from the dye solution. The catalyst applied in the process was the three-component nanocomposite Fe2O3/MgO/MoS2, which was synthesized by hydrothermal method for the first time and then identified by various methods. To analyze and optimize
the parameters of the photocatalytic ozonation process, response surface methodology (RSM) was employed using the Box-Benken design. The results show that time, pH, and amount of the catalyst are the parameters that influence dye removal. The optimal conditions for these variables to remove dye solution with a concentration of 25 mg/l include pH 2.27, 8.6 mg of the catalyst, ozone flow of 0.2 mg/l.h in 26 min. Under these conditions, the proposed process removed 99.3 % of the dye. In addition, the nanocatalyst showed high reusability and stability (92 %) after eight consecutive use cycles. According to the results, the synthesized nanocomposite can be used in the catalytic ozonation process to treat industrial dye-containing effluents.

Keywords

Main Subjects


  1. Tanaka K, Padermpole K, Hisanaga T. Photocatalytic degradation of commercial azo dyes. Water Res. 2000; 34(1):327-33. https://doi.org/10.1016/S0043-1354(99)00093-7
  2. Tabaraki R, Sadeghinejad N, Poorajam H. Study of dyes removal from binary system by hazelnut husk as agricultural waste by response surface methodology. J Color Sci Tech. 2020;14(1):13-23. https://dorl.net/ dor/ 20. 1001.1.17358779. 1399.14.1.2.0 [In Persian]. 
  3. Khajeh Mehrizi M. Investigation of environmental problems caused by dyeing effluent with natural dyes. J Stud Color World. 2021;11(2):53-62. https://dorl.net/ dor/20.1001.1. 22517278.1400.11.2.5.5 [In Persian].
  4. Tafreshi J, Fashandi H, Amini Ershad G. Modification of polysulfone membrane using basil seed gum nanoparticles for removal of methylene blue from wastewater. J Color Sci Tech. 2020;14(1):25-39. https://dorl.net/ dor/20.1001.1. 17358779.1399.14.1.3.1 [In Persian].
  5. Kusvuran E, Gulnaz O, Irmak S, Atanur OM, Yavuz HI, Erbatur O. Comparison of several advanced oxidation processes for the decolorization of Reactive Red 120 azo dye in aqueous solution. J Hazard Mater. 2004;109(1-3):85-93. https://doi.org/10.1016/j.jhazmat. 2004. 03.009.
  6. Ershadi Afshar L, Chaibakhsh N, Moradi-Shoeili Z. Optimization of Fenton advanced oxidation process for decolorization of dye-containing wastewater by copper ferrite nanocatalyst. J Color Sci Tech. 2017;11(2):91-8. https://dorl. net/dor/20.1001.1.17358779. 1396.11.2.2.1 [In Persian].
  7. Pourmoheb Hosseini SM, Chaibakhsh N. Efficient dye removal using Fe3O4. MnO2. MoS2 nanocomposite in optimized photocatalytic ozonation process. Ozone: Sci Eng. 2023;45(4):346-60. https://doi.org/10.1080/ 01919512.2022. 2109590.
  8. Zhang H, He Y, Lai L, Yao G, Lai B. Catalytic ozonation of Bisphenol A in aqueous solution by Fe3O4–MnO2 magnetic composites: Performance, transformation pathways and mechanism. Sep Purif Technol. 2020; 245:116449. https://doi.org/10.1016/j.seppur.2019.116449.
  9. Pourmoheb Hosseini SM, Chaibakhsh N. Application of plant-based coagulant with a novel MnO2. MoS2 nanocatalyst in coagulation/photocatalytic ozonation process for wastewater treatment. Sep. Sci Technol. 2023; 58(5):961-83. https://doi.org/10.1080/01496395. 2023. 2166844.
  10. Mahmoodi NM. Photocatalytic ozonation of dyes using copper ferrite nanoparticle prepared by co-precipitation method. Desalin.. 2011;279(1-3):332-7. https://doi.org/ 10.1016/j.desal.2011.06.027.
  11. Shokoofehpoor F, Chaibakhsh N, Ghanadzadeh Gilani A. Optimization of sono-Fenton degradation of Acid Blue 113 using iron vanadate nanoparticles. Separat Sci Technol. 2019;54(17):2943-58.https://doi.org/10.1080/01496395. 2018. 1556299.
  12. Ferreira SC, Bruns RE, Ferreira HS, Matos GD, David JM, Brandão GC, da Silva EP, Portugal LA, Dos Reis PS, Souza AS, Dos Santos WN. Box-Behnken design: An alternative for the optimization of analytical methods. Anal Chim Acta. 2007;597(2):179-86. https://doi.org/10. 1016/j.aca. 2007. 07. 011.
  13. Dehbi A, Dehmani Y, Omari H, Lammini A, Elazhari K, Abdallaoui A. Hematite iron oxide nanoparticles (α-Fe2O3): synthesis and modelling adsorption of malachite green. J Environ Chem Eng. 2020; 8(1):103394. https://doi.org/10. 1016/j.jece.2019.103394.
  14. Bagheri F, Chaibakhsh N. Efficient visible-light photocatalytic ozonation for dye degradation using Fe2O3/ MoS2 nanocomposite. Separation Sci Technol.2021;56 (17) :3022-32.https://doi.org/10.1080/01496395.2020.1861018.
  15. Pilarska A, Wysokowski M, Markiewicz E, Jesionowski T. Synthesis of magnesium hydroxide and its calcinates by a precipitation method with the use of magnesium sulfate and poly (ethylene glycols). Powder Technol. 2013; 235:148-57. https://doi.org/10.1016/j.powtec.2012.10.008.
  16. Azhari A, Sh MS, Golestanifard F, Saberi A. Phase evolution in Fe2O3/MgO nanocomposite prepared via a simple precipitation method. Mater Chem Phys. 2010; 124(1):658-63. https://doi.org/10.1016/j.matchemphys.2010. 07.030.
  17. Wang H, Chen P, Wen F, Zhu Y, Zhang Y. Flower-like Fe2O3@ MoS2 nanocomposite decorated glassy carbon electrode for the determination of nitrite. Sensors and Actuators B: Chemical. 2015; 220:749-54. https://doi.org/10. 1016/j.snb.2015.06.016
  18. Cho IH, Zoh KD. Photocatalytic degradation of azo dye (Reactive Red 120) in TiO2/UV system: Optimization and modeling using a response surface methodology (RSM) based on the central composite design. Dyes pigm. 2007; 75(3):533-43. https://doi.org/10.1016/j.dyepig.2006.06.041.
  19. Nadavala SK, Swayampakula K, Boddu VM, Abburi K. Biosorption of phenol and o-chlorophenol from aqueous solutions on to chitosan–calcium alginate blended beads. J Hazard Mater. 2009;162(1):482-9. https://doi.org/10.1016/ j.jhazmat.2008.05.070.
  20. Talebi S, Chaibakhsh N, Moradi-Shoeili Z. Application of nanoscale ZnS/TiO2 composite for optimized photocatalytic decolorization of a textile dye. J Appl Res Technol. 2017; 15(4):378-85. https://doi.org/10.1016/j. jart.2017.03.007.
  21. Dissanayake DM, Mantilaka MM, Palihawadana TC, Chandrakumara GT, De Silva RT, Pitawala HM, De Silva KN, Amaratunga GA. Facile and low-cost synthesis of pure hematite (α-Fe2O3) nanoparticles from naturally occurring laterites and their superior adsorption capability towards acid-dyes. RSC adv. 2019;9(37):21249-57. https://doi.org/10. 1039/C9RA03756J.
  22. Manikandan S, Rajan KS. Rapid synthesis of MgO nanoparticles & their utilization for formulation of a propylene glycol based nanofluid with superior transport properties. RSC Adv. 2014;4(93):51830-7. https://doi. org/10.1039/C4RA09173F.
  23. Lakmal Jayarathna LJ, Athula Bandara AB, Ng WJ, Rohan Weerasooriya RW. Fluoride adsorption on γ-Fe2O3 nanoparticles. J Environ Health Sci Eng. 2015; 13: 54-63. https://doi.org/10.1186/s40201-015-0210-2.
  24. Sangpour P, Behtaj M. Enhanced Phtocatalytic Activity of α-Fe2O3 Nanoparticles Using 2D MoS2 Nanosheets. Advanced Ceramics Progress. 2017;3(4):34-40.https://doi.org/10. 30501/ ACP.2017.90763.
  25. Joshi DP, Pant G, Arora N, Nainwal S. Effect of solvents on morphology, magnetic and dielectric properties of (α-Fe2O3@ SiO2) core-shell nanoparticles. Heliyon. 2017;3(2). https://doi. org/10.1016/j.heliyon.2017.e00253
  26. Essien ER, Atasie VN, Okeafor AO, Nwude DO. Biogenic synthesis of magnesium oxide nanoparticles using Manihot esculenta (Crantz) leaf extract. Int Nano Lett. 2020; 10(1):43-8. https://doi.org/10.1007/s40089-019-00290-w. 
  27. Kouchakpour F, Chaibakhsh N, Naeemi AS. Efficient removal of cytotoxic drugs from wastewater by single-stage combined photocatalysis–algae treatment process. Environ Technol. 2021;42(20):3178-90. https://doi. org/ 10.1080/09593330.2020.1725139.
  28. Mano T, Nishimoto S, Kameshima Y, Miyake M. Investigation of photocatalytic ozonation treatment of water over WO3 under visible light irradiation. J Ceram Soc Japan. 2011;119(1395):822-7. https://doi. org/ 10.2109/jcersj2. 119. 822.
  29. Asgari E, Farzadkia M, Esrafili A, Badi MY, Jokandan SF, Sobhi HR. Application of a photocatalytic ozonation process using TiO2 magnetic nanoparticles for the removal of Ceftazide from aqueous solutions: Evaluation of performance, comparative study and mechanism. Optik. 2020;212:164667. https://doi.org/10.1016/j.ijleo.2020.164667.
  30. Ye M, Chen Z, Liu X, Ben Y, Shen J. Ozone enhanced activity of aqueous titanium dioxide suspensions for photodegradation of 4-chloronitrobenzene. J Hazard Mater. 2009;167(1-3):1021-7. https://doi.org/ 10. 1016/j.jhazmat.2009.01.091.
  31. Nozar S, Hosseini SM, Chaibakhsh N, Amini M. Light-assisted catalytic ozonation for efficient degradation of ciprofloxacin using NiO/MoS2 nanocomposite. J Photochem Photobiol A. 2024; 448: 115343. https://doi.org/10.1016/ j.jphotochem.2023.115343.
  32. Amini M, Hosseini SM, Chaibakhsh N. High-performance NiO@Fe3O4 magnetic core–shell nanocomposite for catalytic ozonation degradation of pharmaceutical pollution. Environ Sci Pollut Res. 2023; 30 (43):98063-75. https://doi.org/10.1007/s11356-023-29326-7