Removal of Reseda Luteola Dyes in Dyeing Wastewater by Metal-organic Framework Adsorbent

Document Type : Original Article

Authors

1 Department of Organic Colorants, Institute for Color Science and Technology, P.O. Box: 16765-654, Tehran, Iran

2 Materials Technology and Environmental Research (MATTER) lab, V2N4Z9, University of Northern British Columbia, Prince George, BC, Canada

3 Northern Analytical Lab Services (Northern BC's Environment and Climate Solutions Innovation Hub), V2N4Z9, University of Northern British Columbia, Prince George, BC, Canada

4 Environmental Sciences Program, Faculty of Environment, University of Northern British Columbia, Prince George, British Columbia, V2N4Z9

5 Department of Inorganic Glaze and Pigments, Institute for Color Science and Technology, P.O. Box: 16765-654, Tehran, Iran

6 Department of Environmental Research, Institute for Color Science and Technology, P.O. Box: 16765-654, Tehran, Iran

Abstract

The available dyes in the Reseda luteola are widely used in dyeing textile fibers, especially hand-made carpets. In the dyeing of cellulose and protein fibers, a significant amount of these dyes remain in the dyeing effluent, which causes environmental pollution. In this research, the synthesis and characterization of a metal-organic framework (MOF) containing an amino group has been investigated in order to remove the dyes present in the dyeing effluent. Dye removal conditions have been optimized by the single-parameter method, and the effect of effective factors such as the initial concentration of the dye, amount of adsorbent, and pH have been investigated. The results show that the synthesized MOF can remove the highest amount of dye in a solution with an initial concentration of 240 mg/l at pH 5, time 120 minutes, ambient temperature, and amount of adsorbent 0.07 g. Also, the kinetic data and adsorption isotherm show that the rate of dye removal follows intraparticle diffusion and Freundlich isotherm. The adsorption process is exothermic and physical adsorption process.

Keywords

Main Subjects


  1. National Standard Organization of Iran. 18772-1. Methods for the determination of specific aromatic amines derived from azo dyes - part 1: detection of the use of specific azo dyes accessible with and without extraction from fibers. 2022 [in Persian].
  2. Imani H, Gharanjig K, Ahmadi Z. A novel efficient method for eco-friendly deep dyeing of wool yarns by extracted madder dyes in the presence of additives. Ind Crops Prod. 2022 Sep 1; 183:114970. https://doi.org/10. 1016/j.indcrop. 2022.114970.
  3. Gharanjig K. Dyeing textile fibers with natural dyes. Tehran: ISCT Publishing House: 2022 [in Persian].
  4. Mussagy CU, Silva PG, Amantino CF, Burkert JF, Primo FL, Pessoa Jr A, Santos-Ebinuma VC. Production of natural astaxanthin by Phaffia rhodozyma and its potential application in textile dyeing. Biochem Eng J. 2022; 187:108658. https://doi.org/10.1016/j.bej.2022.108658.
  5. Zargari A. Medicinal Plants. Eighth edition. Tehran: Tehran University Press: 2014 [in Persian].
  6. Crini G, Lichtfouse E, Wilson LD, Morin-Crini N. Green adsorbents for pollutant removal. Environ. Chem. Sustain. World. 2018; 18:23-71. https://doi.org/10.1007/978-3-319-92162-4.
  7. Malekan FM, Khajeh Mehrizi M., Veysian SM. The effect of nanomaterials on dyed handmade carpet with weld natural dye. J Color Sci Tech. 2020; 14(3): 203-214 [in Persian].
  8. Mahmoodi NM, Arami M, Gharanjig K. Laboratory studies and CFD modeling of photocatalytic degradation of colored textile wastewater by titania nanoparticles. Desalin Water Treat. 2009;1(1-3):312-7. https://doi.org/10.5004/ dwt.2009. 128.
  9. Mahmoodi NM, Arami M. Degradation and toxicity reduction of textile wastewater using immobilized titania nanophotocatalysis. J Photochem Photobiol B. 2009 Jan 9;94(1): 20-4. https://doi.org/10.1016/j.jphotobiol.2008. 09. 004.
  10. Sivarajasekar N, Baskar R. Agriculture waste biomass valorisation for cationic dyes sequestration: a concise review. J. Chem. Pharm. Res. 2015;7(9):737-48.
  11. Nejadian MM, Mahmoodi NM, Ghotbi C, Khorasheh F. Novel heterojunction magnetic composite MIL-53 (Fe)/ZnFe2O4: Synthesis and photocatalytic pollutant degradation. Korean J Chem Eng. 2022 Oct;39(10):2713-24. https://doi.org/10.1007/s11814-022-1140-1.
  12. Zokaee Z, Mahmoodi NM, Rahimpour MR, Shariati A. Synthesis of visible light activated metal-organic framework coated on titania nanocomposite (MIL-53 (Al)@ TiO2) and dye photodegradation. J Solid State Chem. 2022; 307:122747. https://doi.org/10.1016/j.jssc.2021.122747.
  13. Kandisa RV, Saibaba KN, Shaik KB, Gopinath R. Dye removal by adsorption: a review. J biorem. 2016;7(6). 
  14. Liu L, Gao ZY, Su XP, Chen X, Jiang L, Yao JM. Adsorption removal of dyes from single and binary solutions using a cellulose-based bioadsorbent. ACS Sustainable Chem Eng. 2015 Mar 2;3(3):432-42. https://doi.org/10.1021/sc500848m
  15. Tochetto GA, Simão L, de Oliveira D, Hotza D, Immich AP. Porous geopolymers as dye adsorbents: Review and perspectives. J Cleaner Prod. 2022 Sep 6:133982. https://doi.org/10.1016/j.jclepro.2022.133982
  16. Cheng X, Zhang A, Hou K, Liu M, Wang Y, Song C, Zhang G, Guo X. Size-and morphology-controlled NH 2-MIL-53 (Al) prepared in DMF–water mixed solvents. Dalton Trans. 2013;42(37):13698-705. https://doi.org/10.1039/C3DT51322J.
  17. Hosseinnezhad M, Gharanjig K, Rouhani S, Razani N, Imani H. Environmentally friendly dyeing of wool yarns using of combination of bio‐mordants and natural dyes. Environ Prog Sustainable Energy. 2022;41(5): e13868. https://doi.org/10. 1002/ ep.13868
  18. Yang Y, Li X, Gu Y, Lin H, Jie B, Zhang Q, Zhang X. Adsorption property of fluoride in water by metal organic framework: optimization of the process by response surface methodology technique. Surf Interfaces. 2022; 28:101649. https://doi.org/10.1016/j.surfin.2021.101649
  19. Li R, Jiang Y, Zhao J, Ramella D, Peng Y, Luan Y. Development of a Brønsted acid Al–MIL-53 metal–organic framework catalyst and its application in [4+ 2] cycloadditions. RSC Adv. 2017;7(55):34591-7. https://doi.org/10.1039/ C7RA06201J.
  20. Thommes M, Kaneko K, Neimark AV, Olivier JP, Rodriguez-Reinoso F, Rouquerol J, Sing KS. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl Chem. 2015;87(9-10):1051-69. https://doi.org/10.1515/pac-2014-1117.
  21. Noble D. FT-IR Spectroscopy. Analytical chemistry. 1995;67(11):381A-5A.
  22. Mosca LPL, Gapan AB, Angeles RA. Stability of metal–organic frameworks: Recent advances and future trends. Eng Proc. 2023; 56(1), 146. https://doi.org/10.3390/ASEC2023-16280
  23. Yuan S, Feng L, Wang K, Pang J, Bosch M, Lollar C, Sun Y, Qin J, Yang X, Zhang P. Stable metal–organic frameworks: design, synthesis, and applications. Adv. Mater. 2018; 30: e1704303. https://doi.org/10.1002/adma.201704303
  24. Lemańska K, van der Woude H, Szymusiak H, Boersma MG, Gliszczyńska-Świgło A, Rietjens IM, Tyrakowska B. The effect of catechol O-methylation on radical scavenging characteristics of quercetin and luteolin-A mechanistic insight. Free Radical Res. 2004;38(6):639-47. https://doi.org/10.1080/ 10715760410001694062
  25. Shenava SM, Kumar JS, Ganugula R, Shaik MR, Busquets R, Khan MR. Synthesis of high-performance aqueous fluorescent nanodispersions for textile printing-A study of influence of moles ratio on fastness properties. Molecules. 2021;26(23):7075. https://doi.org/10.3390/molecules26237075.
  26. Sağlam S, Türk FN, Arslanoğlu H. Use and applications of metal-organic frameworks (MOF) in dye adsorption. J Environ Chem Eng. 2023; 20:110568. https://doi.org/10.1016/j.jece. 2023. 110568.
  27. Hosseinnezhad M, Gharanjig K, Adeel S, Rouhani S, Imani H, Razani N. The effect of ultrasound on environmentally extraction and dyeing of wool yarns. J Eng Fibers Fabrics. 2022; 17:15589250221104471. https://doi.org/10.1177/ 15589250221104471.
  28. Liu Q, Ning L, Zheng S, Tao M, Shi Y, He Y. Adsorption of carbon dioxide by MIL-101 (Cr): regeneration conditions and influence of flue gas contaminants. Sci Rep. 2013; 3(1):2916. https://doi.org/10.1038/srep02916.
  29. Su H, Lv J, Yang L, Feng L, Liu Y, Du Z, Zhang L. Rapid and selective adsorption of a typical aromatic organophosphorus flame retardant on MIL-101-based metal–organic frameworks. RSC Adv. 2020;10(4):2198-208. https://doi.org/10.1039/ C9RA09062B.
  30. Nandi BK, Goswami A, Purkait MK. Removal of cationic dyes from aqueous solutions by kaolin: kinetic and equilibrium studies. Appl Clay Sci. 2009 Jan 1;42(3-4):583-90. https://doi. org/10.1016/j.clay.2008.03.015.
  31. Hambisa AA, Regasa MB, Ejigu HG, Senbeto CB. Adsorption studies of methyl orange dye removal from aqueous solution using Anchote peel-based agricultural waste adsorbent. Appl Water Sci. 2023;13(1):24. https://doi.org/10.1007/s13201-022-01832-y.
  32. Dhaif-Allah MA, Taqui SN, Syed UT, Syed AA. Kinetic and isotherm modeling for acid blue 113 dye adsorption onto low-cost nutraceutical industrial fenugreek seed spent. Appl Water Sci. 2020; 10:1-6. https://doi.org/10.1007/s13201-020-1141-3.
  33. Wang J, Guo X. Rethinking of the intraparticle diffusion adsorption kinetics model: Interpretation, solving methods and applications. Chemosphere. 2022; 309:136732. https://doi.org/ 10.1016/j.chemosphere.2022.136732.
  34. Thuan VT, Jalil A.A, Duyen TCN, Mansur A, Walid N, Anh Ngoc TC, Tung MN, Dai-Viet NV. A critical review on the synthesis of NH2-MIL-53(Al) based materials for detection and removal of hazardous pollutants. Environ Res. 2023; 216, Part 1, 114422. https://doi.org/10.1016/j.envres.2022.114422.
  35. Oyelude EO, Awudza JA, Twumasi SK. Removal of malachite green from aqueous solution using pulverized teak leaf litter: equilibrium, kinetic and thermodynamic studies. Chem Cent J. 2018;12(1):1-0. https://doi.org/10.1186/s13065-018-0448-8
  36. Chaharkam M, Tahmasebpoor M, Sari Yilmaz M. Investigating the performance of activated carbon adsorbent modified with iron oxide nanoparticles in removing crystal violet from water. J Color Sci Tech. 2024;17(4):303-24. 
  37. Slejko FL. Adsorption technology: a step-by-step approach to process evaluation and application. Chem Ing Tech. 1986; 58(6): 531. 
  38. Al-Qurainy FA, Alansi S, Khan S, Nadeem M, Al-Shameri AR, Tarroum M, Gaafar AR, Al-Farraj NO. An efficient and easy micro-propagation of Reseda Lutea (Resedaceae) a rare and medicinally valuable plant of Saudi Arabia. Pak. J. Bot. 2022; 54(6): 2173-2178. https://doi.org/10.21203/rs.3.rs-1127208/v1
  39. Dutta S, Gupta B, Srivastava SK, Gupta AK. Recent advances on the removal of dyes from wastewater using various adsorbents: A critical review. Mater Adv. 2021; 2(14):4497-531. https://doi.org/10.1039/D1MA00354B.
  40. Li C, Xiong Z, Zhang J, Wu C. The strengthening role of the amino group in metal–organic framework MIL-53 (Al) for methylene blue and malachite green dye adsorption. J Chem Eng Data. 2015; 60(11):3414-22. https://doi.org/10.1021/acs. jced. 5b00692
  41. Al-Ghouti MA, Da'ana DA. Guidelines for the use and interpretation of adsorption isotherm models: A review. J Hazard Mater. 2020; 393:122383. https://doi.org/10.1016/j. jhazmat.2020.122383.
  42. Sewu DD, Boakye P, Jung H, Woo SH. Synergistic dye adsorption by biochar from co-pyrolysis of spent mushroom substrate and Saccharina japonica. Bioresour Technol. 2017; 244:1142-9. https://doi.org/10.1016/j.biortech.2017.08.103.
  43. Tran HN, You SJ, Chao HP. Thermodynamic parameters of cadmium adsorption onto orange peel calculated from various methods: A comparison study. J Environ Chem Eng. 2016; 4(3):2671-82. https://doi.org/10.1016/j.jece.2016.05.009.
  44. Inglezakis VJ, Zorpas AA. Heat of adsorption, adsorption energy and activation energy in adsorption and ion exchange systems. Desalin Water Treat. 2012; 39(1-3):149-57. https://doi.org/10.1080/19443994.2012.669169