Investigating the Catalytic Effect of Magnetic Palladium Nanohybrid Based on Graphite Carbon Nitride in the Degradation of Methyl Orange Dye Under Visible Light Irradiation

Document Type : Original Article

Author

Chemistry Department, Faculty of Science, Kosar University of Bojnord, P.O. Box: 9415615458, Bojnord, Iran.

Abstract

Magnetic nanohybrid imine-palladium complex based on graphitic carbon nitride (Pd-Im@Fe3O4@g-C3N4), (Im=1,10-phenanthroline-2,9-dicarbaldehyde), as a highly active and stable photocatalyst is fabricated via a facile approach, and is developed for the degradation of Methyl orange under visible light. The catalyst was identified using XRD, FT-IR, TEM, SEM, DRS, and VSM techniques. According to the results of TEM analysis, the average size of palladium/iron oxide nanoparticles is 90-100 nm. The results indicate that the photocatalytic activity of the mentioned nanohybrid in the optical degradation of methyl orange is higher compared to g-C3N4 and palladium magnetic complex. The influence of reaction parameters such as time, the dependence of degradation on the presence of the catalyst and light irradiation, pH, and the photocatalyst's reusability on the degradation yield have been investigated. The results showed that the degradation efficiency of methyl orange with a concentration of 20 ppm and 0.006 M H2O2 at pH = 4 and a temperature of 40 °C under visible light irradiation after 20 minutes by the catalyst is 91 %.

Keywords

Main Subjects


  1. Vignesh S, Palanisamy G, Srinivasan M, Elavarasan N, Bhuvaneswari K, Venkatesh G, et al. Fabricating SnO2 and Cu2O anchored on g-C3N4 nanocomposites for superior photocatalytic various organic pollutants degradation under simulated sunlight exposure. Diam Relat Mater. 2021; 120: 108606. https://doi.org/10.1016/j.diamond.2021.108606.
  2. Xu JC, Xin PH, Gao YQ, Hong B, Jin HX, Jin DF, et al. Magnetic properties and methylene blue adsorptive performance of CoFe2O4/activated carbon nanocomposites. Mater Chem Phys. 2014; 147(3):915–919. https://doi.org/ 10.1016/j.matchemphys.2014.06.037.
  3. Shi WL, Liu C, Li MY, Lin X, Guo F, Shi JY, Fabrication of ternary Ag3PO4/ Co3(PO4)2/g-C3N4 heterostructure with following type II and Z-scheme dual pathways for enhanced visible-light photocatalytic activity. J Hazard Mater. 2020; 389:121907. https://doi.org/10.1016/j.jhazmat.2019.121907.
  4. Chen HD, Xu JK, Wei JQ, Wang PF, Han YB, Xu JC, et al. Mesoporous CoFe2O4 nanowires: nanocasting synthesis, magnetic separation and enhanced catalytic degradation for ciprofloxacin. J Phys Chem Solids. 2019; 132:138–144. https://doi.org/10.1016/j.jpcs.2019.04.008.
  5. Vishnu D, Dhandapani B, Authilingam S, Sivakumar SV, A comprehensive review of effective adsorbents used for the removal of dyes from wastewater. Curr Anal Chem. 2022;18(14):255–268. https://doi.org/10.2174/157341101699 9200831111155.
  6. Fei B, Tang Y, Wang X, Dong X, Liang J, Fei X, et al. One-pot synthesis of porous g-C3N4 nanomaterials with different morphologies and their superior photocatalytic performance. Mater Res Bull. 2018; 102:209–217. https://doi.org/10.1016/ j.materresbull.2018.02.041.
  7. Azeez F, Al-Hetlani E, Arafa M, Abdelmonem Y, Nazeer AA, Amin MO, et al. The effect of surface charge on photocatalytic degradation of methylene blue dye using chargeable titania nanoparticles. Sci Rep. 2018; 8:7104. 
  8. Wu M, Gong Y, Nie T, Zhang J, Wang R, Wang H, et al. Template-free synthesis of nanocage-like g-C3N4 with high surface area and nitrogen defects for enhanced photocatalytic H2 activity. J Mater Chem A. 2019;7:5324–5332. https://doi. org/ 10.1039/C8TA12076E.
  9. Zhu D, Zhou Q, Action and mechanism of semiconductor photocatalysis on degradation of organic pollutants in water treatment: a review. Environ Nanotechnol Monit Manag. 2019; 12;100255. https://doi.org/10.1016/j.enmm. 2019. 100255. 
  10. Chen S, Takata T, Domen K, Particulate photocatalysts for overall water splitting, Nat. Rev. Mater. 2017; 2:17050. 
  11. Melchionna M, Fornasiero P, Updates on the roadmap for photocatalysis, ACS Catal. 2020; 10(10):5493–5501. https://doi. org/10.1021/acscatal.0c01204.
  12. M. Fakhrul Ridhwan Samsudin, N. Bacho, S. Sufian, Recent development of graphitic carbon nitride-based photocatalyst for environmental pollution remediation. In Nanocatalysts; IntechOpen: London, UK, 2019.
  13. Liu X, Ma R, Zhuang L, Hu B, Chen J, Liu X, Wang X, Recent developments of doped g-C3N4 photocatalysts for the degradation of organic pollutants. Crit Rev Environ 

    Sci Technol. 2021; 51:751–790. https://doi.org/10.1080/ 10643389.2020.1734433.

  14. Nejat R, Najminejad Z, Fazlali F, Shahraki S, Khazaee Z, g-C3N4/H3PW4Mo8O40 S-scheme photocatalyst with enhanced photocatalytic oxidation of alcohols and sulfides. Inorg. Chem Commun. 2021; 132:108842-108849. https://doi.org/10. 1016/j.inoche.2021.108842.
  15. Zhu H, Yang B, Yang J, Yuan Y, Zhang J, Persulfate-enhanced degradation of ciprofloxacin with SiC/g-C3N4 photocatalyst under visible light irradiation. Chemosphere. 2021;276:130217. https://doi.org/10.1016/j.chemosphere. 2021. 130217.
  16. Huang Z, Jia S, Wei J, Shao Z, A visible light active, carbon–nitrogen–sulfur codoped TiO2/g-C3N4 Z-scheme heterojunction as an effective photocatalyst to remove dye pollutants. RSC Adv. 2021;11:16747-16754. https://doi.org/ 10. 1039 /D1RA01890F.
  17. Wei L, Wang X, Yu YN, Liu H, Li Y, Zhang YN, CoB/C3N4 photocatalyst forrapid hydrogen evolution from hydrolysis of sodium borohydride under light irradiation. Funct Mater Lett. 2021; 14(2):2150013. https://doi.org/10.1142/ S179360472 1500132.
  18. Mirzaei H, Ehsani MH, Shakeri A, Ganjali MR, A. Badiei. Preparation and photocatalytic application of ternary Fe3O4/GQD/ g-C3N4 heterostructure photocatalyst for RhB degradation. Pollution, 2022: 8:779-791. https://doi.org/ 10.22059/poll.2022.331685.1202.
  19. Jiang L, Yuan X, Pan Y, Liang J, Zeng G, Wu ., Wang H, Doping of graphitic carbon nitride for photocatalysis: A reveiw. Appl Catal B Environ. 2017; 217:388–406.
  20. Samanta S, Martha S, Parida K, Facile synthesis of Au/g-C3N4 nanocomposites: an inorganic/organic hybrid plasmonic photocatalyst with enhanced hydrogen gas evolution under visible-light irradiation. Chem Cat Chem. 2014;6(5):1453–1462. https://doi.org/10.1002/cctc. 201300949.
  21. Li Y, Yan Y, Li Y; Zhang H, Li D, Yang D, Size-controlled synthesis of Pd nanosheets for tunable plasmonic properties. Cryst Eng Comm. 2015;17:1833–1838. https://doi.org/10. 1039/C4CE02062F.
  22. Le S, Jiang T, Zhao Q, Liu X, Li Y, Fang B, Gong M, Cu-doped mesoporous graphitic carbon nitride for enhanced visible-light driven photocatalysis. RSC Adv. 2016; 6:38811–38819. https://doi.org/10.1039/C6RA03982K
  23. Wang N, Wang J, Hu J, Lu X, Sun J, Shi F, Liu Z. H, Lei Z, Jiang R, Design of Palladium-Dopedg-C3N4 for enhanced photocatalytic activity toward hydrogen evolution reaction. ACS Appl Energy Mater. 2018; 1(6):2866–2873. https://doi.org/10.1021/acsaem.8b00526.
  24. Wei XN, Wang HL, Preparation of magnetic g-C3N4/Fe3O4/TiO2 photocatalyst for visible light photocatalytic application. J Alloys Compd. 2018; 763;844–853. 
  25. Ye L, Liu J, Jiang Z, Peng T, Zan L, Facets coupling of BiOBr-g-C3N4 composite photocatalyst for enhanced visible-light-driven photocatalytic activity. Appl Catal B. 2013; 142:1–7. https://doi.org/10.1016/j.apcatb.2013.04.058. 
  26. Nejat R, Chamack M, Mahjoub A, Active and recyclable ordered mesoporous magnetic organometallic catalyst as high‐performance visible light photocatalyst for degradation of organic pollutants. Appl Organometal Chem. 2017; 31(11):3745-3753. https://doi.org/10.1002/aoc.3745.