A Rheological Study of Poly(Vinyl chloride) Plastisols: Investigating the Gel Structure at Room Temperature

Document Type : Original Article

Authors

Department of Resin and Additives, Institute for Color Science and Technology, P.O.Box: 16765-654, Tehran, Iran

Abstract

The study of the rheology of polyvinyl chloride plastisol is important because, at first, it is in a paste state and is usually applied by spraying. Moreover, controlling the gel and melting processes is possible by using rheology. This research investigated the rheological behavior of plastisols, including shear thinning behavior, thixotropy and gelation behavior. Also, long-term ageing was studied and it was found that plastisols turn into gel at a constant temperature for a long time period according to the concept of time-temperature superposition. Finally, the relationship between the samples' thixotropy and yield stress was evaluated to study the physical gel structure. The results confirm that thixotropy and yield stress in PVC plastisols are the same due to the fundamental physics and this is related to the strength of the microstructure.

Keywords

Main Subjects


  1. Abdesselam Y, Agassant JF, Castellani R, Valette R, Demay Y, Gourdin D, et al. Rheology of plastisol formulations for coating applications. Polymer Engineering & Science. 2017;57(9):982-8. https://doi.org/10.1002/pen.24475.
  2. Amos SE, Yalcin B. Hollow glass microspheres for plastics, elastomers, and adhesives compounds: Elsevier; 2015.
  3. Rybachuk G, Kozlova I, Mozzhukhin V, Guzeev V. PVC plastisols: Preparation, properties, and application. Polymer Science Series C. 2007;49(1):6-12. https://doi.org/10.1016/ S0927-796X(00)00012-7.
  4. Boudhani H, Lainé C, Fulchiron R, Bounor‐Legaré V, Cassagnau P. Viscoelasticity and mechanical properties of reactive PVC plastisols. Polymer Engineering & Science. 2009;49(6):1089-98 https://doi.org/10.1002/pen.21356.
  5. Laine C, Cassagnau P. Prediction of zero shear viscosity of poly (vinyl chloride) plastisols. Applied Rheology. 2006;16(3):136-44. https://doi.org/10.1515/arh-2006-0009
  6. Garcia J, Marcilla A. Influence of the type of resin in the gelation and fusion processes of PVC plastisols. Polymer. 1998;39(2):431-5. https://doi.org/10.1016/S0032-3861(97) 00297-8.
  7. López J, Balart R, Jiménez A. Influence of crystallinity in the curing mechanism of PVC plastisols. Journal of applied polymer science. 2004;91(1):538-44. https://doi.org/10. 1002/ app.13122.
  8. 8. Rasteiro M, Antunes E. Correlating the rheology of PVC-based pastes with particle characteristics. Particulate science and technology. 2005;23(4):361-75. https://doi.org/10.1080/ 02726350500212970.
  9. Barroso EG, Duarte FM, Couto M, M. Maia J. A rheological study of the ageing of emulsion and microsuspension‐based PVC plastisols. J Appl Polym Sci. 2008;109(1):664-73. https://doi.org/10.1002/app.28173.
  10. Hoffmann D, Garcia L. Rheology of PVC plastisols. II: effect of time and temperature. Journal of Macromolecular Science, Part B: Physics. 1981;20(3):335-48. https://doi.org/10. 1080/00222348108219446.
  11. Nakajima N, Harrell E. Viscosity aging of poly (vinyl chloride) plastisol: The effect of the resin type and plasticizer type. Journal of applied polymer science. 2005;95(2):448-64. https://doi.org/10.1002/app.21297.
  12. Grossman RF. Handbook of vinyl formulating: John Wiley & Sons; 2008.
  13. Marceneiro S, Hu Q, Dias AM, Lobo I, Dias I, de Pinho E, et al. Effects of two phosphonium-type ionic liquids on the rheological and thermomechanical properties of emulsion poly (vinyl chloride)-based formulations plasticized with DINP and CITROFOL. Industrial & Engineering Chemistry Research. 2014;53(41):16061-71. https://doi.org/10.1021/ ie502382a.
  14. Yu BY, Lee AR, Kwak S-Y. Gelation/fusion behavior of PVC plastisol with a cyclodextrin derivative and an anti-migration plasticizer in flexible PVC. European polymer journal2012. p. 885-95. https://doi.org/10.1016/j.eurpolymj.2012.02.008.
  15. Shenoy AV. Rheology of filled polymer systems: Springer Science & Business Media; 2013.
  16. Pishvaei M, Graillat C, McKenna T, Cassagnau P. Rheological behaviour of polystyrene latex near the maximum packing fraction of particles. Polymer. 2005;46(4):1235-44. https://doi.org/10.1016/j.polymer.2004.11.047.
  17. Pishvaei M, Graillat C, McKenna T, Cassagnau P. Experimental investigation and phenomenological modeling of the viscosity-shear rate of bimodal high solid content latex. Journal of Rheology. 2007;51(1):51-69. https://doi.org/10. 1122/1.2391069.
  18. Barnes HA. A handbook of elementary rheology: University of Wales, Institute of Non-Newtonian Fluid Mechanics Aberystwyth; 2000.
  19. Nakajima N, Harrell E. Rheology of PVC plastisol: particle size distribution and viscoelastic properties. Journal of colloid and interface science. 2001;238(1):105-15. https://doi.org/10. 1006/jcis.2001.7468.
  20. Skeist I. Handbook of adhesives: Springer Science & Business Media; 2012.
  21. Nakajima N, Harrell E. Rheology of poly (vinyl chloride) plastisol for superhigh shear‐rate processing. I. Journal of applied polymer science. 2010;115(6):3605-9. https://doi.org/ 10.1002/app.31366.
  22. Tomas A, Rasteiro M, Gando‐Ferreira L, Figueiredo S. Rheology of poly (vinyl chloride) plastisol: Effect of a particular nonionic cosurfactant. Journal of applied polymer science. 2010;115(1):599-607.https://doi.org/10.1002/ app. 30998.
  23. Nakajima N, Kwak SY. Effect of plasticizer type on gelation and fusion of PVC plastisol, dialkyl phthalate series. Journal of Vinyl Technology. 1991;13(4):212-22. https://doi.org/10. 1002/vnl.730130411.
  24. Garcia J, Marcilla A. Rheological study of the influence of the plasticizer concentration in the gelation and fusion processes of PVC plastisols. Polymer. 1998;39(15):3507-14. https://doi.org/10.1016/S0032-3861(97)10033-7.
  25. Rasteiro M, Tomas A, Ferreira L, Figueiredo S. PVC paste rheology: study of process dependencies. Journal of applied polymer science. 2009;112(5):2809-21. https://doi.org/10. 1002/app.29931.
  26. Ji Y, Tang A, Yang Z, Luo H, Tan H. Changes in rheological properties of polyvinyl chloride plastisols with storage time. Journal of Applied Polymer Science. 2020;137(37):49105. https://doi.org/10.1002/app.49105.
  27. Pishvaei M, Akbari S, Jebelli S, Pejman S. The time-dependent rheological properties of PVC Plastisol.  The third national conference on the role of rheology in related technologies: Amirkabir University of Technology, Faculty of Polymer and Color Engineering; 2018.
  28. Marceneiro S, Alves R, Lobo I, Dias I, de Pinho E, Dias AM, et al. Effects of poly (vinyl chloride) morphological properties on the rheology/aging of plastisols and on the thermal/leaching properties of films formulated using nonconventional plasticizers. Industrial & Engineering Chemistry Research. 2018;57(5):1454-67. https://doi.org/10. 1021/acs.iecr.7b03097.
  29. Eftekhari B., Pishvaei M., A Review on the Poly(Vinyl Chloride) Plastisol Coatings and Its Rheology” Journal of Studies in Color World,  10(3), (2020), 13-28.DOR: 20.1001.1.22517278.1399.10.3.2.7
  30. Jarny S, Roussel N, Rodts S, Bertrand F, Le Roy R, Coussot P. Rheological behavior of cement pastes from MRI velocimetry. Cement and concrete research. 2005;35(10):1873-81.https://doi.org/10.1016/j.cemconres. 2005.03.009.