Removal of Acidic Dye by Electrochemical Method Using Polymeric Nanofiber Containing Reduced Graphene Oxide Nanoparticles and Catalyst

Document Type : Original Article

Authors

1 Department of Physics, Khatam al-Anbia Air Defense University (PBUH), P.O. Box: 178183513, Tehran, Iran

2 Department of Physics, Imam Ali University, P.O. Code: 1317893471, Tehran, Iran

Abstract

In this study, to remove the acidic blue 92 during the heterogeneous electro-fenton process, the electrospinning method produced a nanofiber layer and used it as the cathode. Polyaniline/nylon66 nanofiber (PANI/PA66) was produced by the electrospinning method to produce such a nanofibrous electrode. Reduced graphene oxide nanoparticles were added to the polymeric solution to improve the conductivity of the nanofibrous electrode and the dye removal percentage. Magnetic iron nanoparticles were also used as fenton catalysts (PANI/PA66/rGO/Fe3O4). The optimal electrospinning conditions were determined by response surface methodology. Electro fenton process for dye removal was carried out in a two-electrode system using PANI/PA 66 / rGO 6 % / Fe3O4 as a cathode in 120 minutes, and the highest dye removal percentage achieved was 91.78 %. Also, the effect of selecting essential parameters on the dye removal efficiency, such as pH, initial dye concentration, and Fe3O4 dosage, was investigated.

Keywords


  1. Iglesias O, de Dios MF, Tavares T, Sanromán M, Pazos M. Heterogeneous electro-Fenton treatment: preparation, characterization and performance in groundwater pesticide removal. J Ind and Eng Chem. 2015;27:276-282. https://doi.org/10.1016/j.jiec.2014.12.044
  2. Gholami Akerdi A, Bahrami H, Arami M, Pajootan E. Photocatalytic Dye removal using GO-TiO2 modified electrode and optimization by RSM. J Color Sci Tech. 2017;11(3):187-202. https://dorl.net/dor/20.1001.1.17358779. 1396.11.3.4.5 [In Persian].
  3. Heidari Z, Pelalak R, Minghua Zh. A critical review on the recent progress in application of electro-Fenton process for decontamination of wastewater at near-neutral pH. Chem Eng J. 2023; 145741. https://doi.org/10.1016/j.cej.2023.145741.
  4. Gopinath A, Pisharody L, Popat A, Nidheesh PV. Supported catalysts for heterogeneous electro-Fenton processes: Recent trends and future directions. Curr Opin Solid State Mater Sci. (2022); 26(2): 100981. https://doi.org/10.1016/j.cossms. 2022.100981.
  5. Sharma A, Lee BK. Synthesis and characterization of anionic/nonionic surfactant-interceded iron-doped TiO2 to enhance sorbent/photo-catalytic properties. J Solid State Chem. 2015; 229:1-9. https://doi.org/10.1016/j.jssc.2015. 04.042.
  6. Vakili Tajareh A, Ganjidoust H, Ayati B. Photocatalytic Removal of azo dye Acid Red 14 from water by magnetic nanocomposite Tio2/Fe3O4/Cnt. J Color Sci Tech. 2019;13(1):75-87. https://dorl.net/dor/20.1001.1.17358779. 1398.13.1.7.8[In Persian]
  7. Nabizadeh Chianeh F, Basiri Parsa J. Degradation of C.I. Reactive Orange 7 Using titanium electrode coated with Nano-SnO2 particles and optimization by RSM. J Color Sci Tech. 2019;13(3):241-52. https://dorl.net/dor/20.1001.1. 17358779.1398.13.3.6.1 [In Persian].
  8. Caliman AF, Cojocaru C, Antoniadis A, Poulios I. Optimized photocatalytic degradation of Alcian Blue 8 GX in the presence of TiO2 suspensions. J Hazard Mater. 2007;144(1):265-73.https://doi.org/10.1016/j.jhazmat. 2006. 10.019.
  9. He F, Hu W, Li Y. Biodegradation mechanisms and kinetics of azo dye 4BS by a microbial consortium. Chemosphere. 2004;57(4):293-301. https://doi.org/10.1016/j.chemosphere. 2004.06.036
  10. Liu W, Ai Z, Zhang L. Design of a neutral three-dimensional electro-Fenton system with foam nickel as particle electrodes for wastewater treatment. J Hazard Mater. 2012;243:257-264. https://doi.org/10.1016/j.jhazmat.2012.10.024
  11. Eslami, M. Moradi, F. Ghanbari, H. Raei Shaktaee. Study on performance of electro-fenton for color removal from real textile wastewater based on ADMI. J of Color Sci Tech.2013;7(3):173-180. https://dorl.net/dor/20.1001.1. 17358779.1392.7.3.1.4 [In Persian].
  12. Xu L, Wang J. Magnetic Nanoscaled Fe3O4/CeO2 Composite as an efficient fenton-like heterogeneous catalyst for degradation of 4-Chlorophenol. Environ Sci Technol. 2012;46(18):10145-10153. https://doi.org/10.1021/es300303f.
  13. Vakili Tajareh A, Ganjidoust H, Ayati B. Photocatalytic removal of azo dye acid red 14 from water by magnetic nanocomposite TiO2/Fe3O4/Cnt, J Color Sci Tech. 2019;13(1): 75-87. https://dorl.net/dor/20.1001.1.17358779.1398.13.1.7.8 [In Persian].
  14. Zhang C, Zhou M, Ren G, Yu X, Ma L, Yang J, et al. Heterogeneous electro-Fenton using modified iron–carbon as catalyst for 2, 4-dichlorophenol degradation: Influence factors, mechanism and degradation pathway. Water Res. 2015;70:414-24. https://doi.org/10.1016/j.watres.2014.12.022.
  15. Yahya MS, Oturan N, El Kacemi K, El Karbane M, Aravindakumar C, Oturan MA. Oxidative degradation study on antimicrobial agent ciprofloxacin by electro-Fenton process: kinetics and oxidation products. Chemosphere. 2014;117:447-54. https://doi.org/10.1016/j.chemosphere. 2014.08.016.
  16. Ayoub K, Nélieu S, Van Hullebusch ED, Labanowski J, Schmitz-Afonso I, Bermond A, et al. Electro-Fenton removal of TNT: Evidences of the electro-chemical reduction contribution. Appl Catal B. 2011;104(1):169-76. https://doi. org/10.1016/j.apcatb.2011.02.016
  17. Song S, Wu M, Liu Y, Zhu Q, Tsiakaras P, Wang Y. Efficient and stable carbon-coated nickel foam cathodes for the electro-fenton process. Electrochim Acta. 2015;176:811-818. https://doi.org/10.1016/j.electacta.2015.07.029.
  18. Shen J, Li Y, Zhu Y, Hu Y, Li C. Aerosol synthesis of Graphene-Fe3O4 hollow hybrid microspheres for heterogeneous Fenton and electro-Fenton reaction. J Environ Chem Eng. 2016;4(2):2469-76. https://doi.org/10.1016/ j.jece.2016.04.027.
  19. Zhao B, Mele G, Pio I, Li J, Palmisano L, Vasapollo G. Degradation of 4-nitrophenol (4-NP) using Fe–TiO2 as a heterogeneous photo-Fenton catalyst. J Hazard Mater. 2010;176(1):569-74. https://doi.org/10.1016/j. jhazmat.2009. 11.066.
  20. Wang M, Fang G, Liu P, Zhou D, Ma C, Zhang D, et al. Fe3O4@ β-CD nanocomposite as heterogeneous Fenton-like catalyst for enhanced degradation of 4-chlorophenol (4-CP). Appl Catal B. 2016;188: 113-122. https://doi.org/10.1016/ j.apcatb.2016.01.071.
  21. Wang W, Liu Y, Li T, Zhou M. Heterogeneous Fenton catalytic degradation of phenol based on controlled release of magnetic nanoparticles. Chem Eng J. 2014;242:1-9. https://doi.org/10.1016/j.cej.2013.12.080.
  22. Rosales E, Pazos M, Longo M, Sanromán M. Electro-Fenton decoloration of dyes in a continuous reactor: a promising technology in colored wastewater treatment. Chem Eng J. 2009;155(1):62-7. https://doi.org/10.1016/j.cej.2009.06.028.
  23. Nidheesh P, Gandhimathi R. Trends in electro-Fenton process for water and wastewater treatment: an overview. Desalination. 2012;299:1-15. https://doi.org/10.1016/ j.desal. 2012.05.011
  24. Kourdali S, Badis A, Boucherit A. Degradation of direct yellow 9 by electro-Fenton: Process study and optimization and, monitoring of treated water toxicity using catalase. Ecotoxicol Environ Saf. 2014;110: 110-120. https://doi.org/ 10.1016/j.ecoenv.2014.08.023
  25. Zhang H, Fei C, Zhang D, Tang F. Degradation of 4-nitrophenol in aqueous medium by electro-Fenton method. J Hazard Mater. 2007;145(1):227-232. https://doi.org/10.1016/ j.jhazmat.2006.11.016
  26. Sudoh M, Kitaguchi H, Koide K. Electrochemical production of hydrogen peroxide by reduction of oxygen. J Chem Eng Japan. 1985;18(5):409-414. https://doi.org/10.1252/jcej. 18. 409.
  27. ElMekawy A, Hegab HM, Losic D, Saint CP, Pant D. Applications of graphene in microbial fuel cells: The gap between promise and reality. Renewable and Sustainable Energy Reviews. 2016. https://doi.org/10.1016/j.rser. 2016.10.044.
  28. Van Genuchten CM, Bandaru SR, Surorova E, Amrose SE, Gadgil AJ, Peña J. Formation of macroscopic surface layers on Fe (0) electrocoagulation electrodes during an extended field trial of arsenic treatment. Chemosphere. 2016;153:270-279. https://doi.org/10.1016/j.chemosphere.2016.03.027.
  29. Gao C, Guo Z, Liu J-H, Huang X-J. The new age of carbon nanotubes: An updated review of functionalized carbon nanotubes in electrochemical sensors. Nanoscale. 2012;4(6):1948-63. https://doi.org/10.1039/C2NR11757F.
  30. Song S, Zhan L, He Z, Lin L, Tu J, Zhang Z, et al. Mechanism of the anodic oxidation of 4-chloro-3-methyl phenol in aqueous solution using Ti/SnO2–Sb/PbO2 electrodes. J Hazard Mater. 2010;175(1):614-621. https://doi. org/10.1016/j.jhazmat.2009.10.051
  31. Upadhyay RK, Soin N, Bhattacharya G, Saha S, Barman A, Roy SS. Grape extract assisted green synthesis of reduced graphene oxide for water treatment application. Mater Lett. 2015;160:355-358. https://doi.org/10.1016/j.matlet.2015.07. 144.
  32. Cong Y, Long M, Cui Z, Li X, Dong Z, Yuan G, et al. Anchoring a uniform TiO2 layer on graphene oxide sheets as an efficient visible light photocatalyst. Appl Surf Sci. 2013;282:400-407. https://doi.org/10.1016/j.apsusc.2013. 05. 143.
  33. Chen K, Wang G-H, Li W-B, Wan D, Hu Q, Lu LL. Application of response surface methodology for optimization of Orange II removal by heterogeneous Fenton-like process using Fe3O4 nanoparticles. Chinese Chem Lett. 2014;25(11):1455-460. https://doi.org/10.1016/j.cclet.2014. 06. 014.
  34. Hou L, Zhang Q, Jérôme F, Duprez D, Zhang H, Royer S. Shape-controlled nanostructured magnetite-type materials as highly efficient Fenton catalysts. Appl Catal B. 2014;144:739-749. https://doi.org/10.1016/j.apcatb.2013.07.072.
  35. Valizadeh S, Rasoulifard M, Dorraji MS. Modified Fe3O4-hydroxyapatite nanocomposites as heterogeneous catalysts in three UV, Vis and Fenton like degradation systems. Appl Surf Sci. 2014;319:358-366. https://doi.org/10.1016/j.apcatb.2013. 07.072.
  36. Sun H, Liu S, Zhou G, Ang HM, TadeĢ MO, Wang S. Reduced graphene oxide for catalytic oxidation of aqueous organic pollutants. ACS Appl Mater Interfaces. 2012;4(10):5466-5471. https://doi.org/10.1021/am301372d.
  37. Rahdar HAEA, Arabi H. Preparation of super paramagnetic iron oxide nanoparticles and investigation their magnetic properties. 2016. https://www.researchgate.net/publication/ 314502707.
  38. Harifi T, Montazer M. A novel magnetic reusable nanocomposite with enhanced photocatalytic activities for dye degradation. Sep Purif Technol. 2014;134:210-9. https://doi. org/10.1016/j.seppur.2014.06.042.
  39. Pignatello JJ. Dark and photoassisted iron (3+)-catalyzed degradation of chlorophenoxy herbicides by hydrogen peroxide. Environ Sci Technol. 1992;26(5):944-951. https://doi.org/10.1021/es00029a012.
  40. Moradi, S.A.H., N. Ghobadi, and F. Zahrabi, Highly conductive supercapacitor based on laser-induced graphene and silver nanowires. J Mater Sci. 2022;33(23): 18363-18356. https://doi.org/10.1007/s10854-022-08690-z.
  41. Moradi SAH, Ghobadi N, Tabatabaeinejad SM, Facile and rapid preparation of progressive ZnO/NiO/rGO nano-photocatalyst and investigation its mechanism and reaction kinetics while decomposition of pharmaceuticals pollutant. Surf Interfaces. 2023; 39:102939. https://doi.org/10.1016/ j.surfin.2023.102939
  42. Gholami Akerdi A, Bahrami SH, Pajootan E, Modeling and optimization of photocatalytic decolorization of binary dye solution using graphite electrode modified with Graphene oxide and TiO2. J Environ Health Sci Eng. 2020;18(17):51-62. https://doi.org/10.1007/s40201-019-00437-z.
  43. Ghobadi N, Hosseini Moradi S, M. Amirzade, Synthesis and structural, magnetic, and electromagnetic characterization of cobalt ferrite/reduced graphene oxide composite. Adv Mater Eng. 2022;40(4):69-83. 10.47176/JAME.40.4.23402.