Synthesis of La2CoFe2O7 Nanocomposite and its Photocatalytic Application to Remove Organic Dyes

Document Type : Original Article

Authors

1 Chemistry Department, Payame Noor University, P.O. Box: 19395-4697, Tehran, Iran

2 Department of Chemistry, Zahedan Branch, Islamic AzadUniversity, P.O. Box: 98135-978, Zahedan, Iran

3 Esfarayen University of Technology, P.O. Code: 9661998195, Esfarayen, North Khorasan, Iran

Abstract

Wastewater from textile factories is one of the most important sources of environmental pollution, so it is necessary to treat these wastewater. Therefore, the decomposition of colors using photocatalysts, which is one of the advanced oxidation processes, has been studied. The present work introduces the synthesis of the magnetic mixed metal oxide La2CoFe2O7 (LCoFO) nanocomposite as an effective photocatalyst by co-precipitation method. The synthesized metal oxide was characterized by infrared spectroscopy (FT-IR), X-ray diffraction pattern (XRD) and transmission electron microscopy (TEM). The alternating force gradient magnetometer (AGFM) shows the magnetic behavior of the LCoFO nanocomposite. In this research, the photocatalytic properties of LCoFO nanocomposites using photolysis of methyl violet (MV), malachite green oxalate (MG), and eriochrome black T (EBT) were investigated under ultraviolet light irradiation in different parameters such as temperature, solution pH, dye concentration, catalyst amount, and UV radiation time. The results showed that these nanocomposites have good photocatalytic performance.

Keywords


  1. 1.   Mark JE, Jiang CY, Tang MY. simultaneous curing and filling of elastomers. Macromol. 1984;17: 2613-2616. https://doi.org/ 10.1021/ma00142a026
  2. 2.   Abniki M, Moghimi A. Removal and measurement of bromocresol purple dye in aqueous samples by β-cyclodextrin-modified magnetic carbon nanotube with dispersive solid-phase extraction technique. J Color Sci Tech. 2022;15(4):301-315. https://dorl.net/dor/20.1001.1. 17358779. 1400. 15.4. 4.5 [In Persian].
  3. 3.   Wen J, Wilkes GL. Organic/inorganic hybrid network materials by the sol− gel approach. Chem Mater. 1996; 8: 1667-1681. https://doi.org/10.1021/cm9601143.
  4. 4.   Camargo PH, Satyanarayana CKG, Wypych F. Nanocomposites: synthesis, structure, properties and new application opportunities. Mater Res. 2009; 12: 1-39. https://doi.org/10.1590/S1516-14392009000100002.  
  5. 5.   Ancy K, Bindhu MR, Bai JS, Gatasheh M K, Hatamleh A A, Ilavenil S. Photocatalytic degradation of organic synthetic dyes and textile dyeing waste water by Al and F co-doped TiO2 nanoparticles. Environ Res. 2022; 206: 112492-112500. https://doi.org/10.1016/j.envres.2021.112492.
  6. 6.   Zar M, Adibian E, Ghasemi E, Ashour F. Synthesis, Characterization, and Adsorptive Properties of Polyaniline@ MFe2O4 (M: Mg, Mn, Ni) Magnetic Nanocomposites. J Color Sci Tech. 2023; 17(2):93-110. https://dorl.net/dor/ 20.1001. 1.17358779. 1402.17.2.1.2 [In Persian].
  7. 7.   Sharma Y, Srivastava V. Separation of Ni(II) Ions from Aqueous Solutions by Magnetic Nanoparticles. J. Chem. Eng. Data. 2009; 55: 1441-1442. https://doi.org/10.1021/je900619d
  8. 8.   Chang YC, Chen DH. Adsorption Kinetics and Thermodynamics of Acid Dyes on a Carboxymethylated Chitosan-Conjugated Magnetic Nano-Adsorbent. Macro Bios. 2005; 5: 254- 261. https://doi.org/10.1002/mabi.200400153
  9. 9.   Teja AS, Koh PY. Synthesis, properties, and applications of magnetic iron oxide nanoparticles. Prog. Cryst. Growth. Ch. 2009; 55: 22-45. https://doi.org/10.1016/j.pcrysgrow. 2008. 08.003
  10. 10.Zhou J, Wu W, Caruntu D, Yu M, Martin A, Chen J, et al. Synthesis of Porous Magnetic Hollow Silica Nanospheres for Nanomedicine Application. J. Phys. Chem. C. 2007; 111: 17473-17477. https://doi.org/10.1021/jp074123i.
  11. 11.Barekat A, Shirkavand Hadavand B, Rayatzadeh A, Badri R. Modified calix[4] resorcinarenes oligomer as adsorbent in dye adsorption:investigation of optimal adsorption conditions. J Color Sci Tech. 2023;16(4):293-303. https://dorl.net/dor/20. 1001.1.17358779.1401.16.4.2.0  [In Persian].
  12. 12.Zohra B, Aicha K., Fatima S, Nourredine B, Zoubir D. Adsorption of Direct Red 2 on bentonite modified by cetyltrimethylammonium bromide. Che Eng J. 2008; 136: 295-305. https://doi.org/10.1016/j.cej.2007.03.086.
  13. 13.Shu HY, Chang M C, Chen C C, Chen P E. Using resin supported nano zero-valent iron particles for decoloration of Acid Blue 113 azo dye solution. J Haz Mat. 2010; 184: 499-505. https://doi.org/10.1016/j.jhazmat.2010.08.064.
  14. 14.Joshi K M, Shrivastava V S. Removal of hazardous textile dyes from aqueous solution by using commercial activated carbon with TiO2 and ZnO as photocatalyst, Interl. J Chemtech Res. 2010; 2: 427-435.
  15. 15.Luo X, Wang C, Luo S. Dong R, Tu X, Zeng G. Adsorption of As (III) and As (V) from water using magnetite Fe3O4-reduced graphite oxide–MnO2 nanocomposites. Chem Eng J. 2012; 187: 45-52. https://doi.org/10.1016/j.cej.2012.01.073.
  16. 16.Barka N, Abdennouri M, Makhfouk ME. Removal of Methylene Blue and Eriochrome Black T from aqueous solutions by biosorption on Scolymus hispanicus L.: Kinetics, equilibrium and thermodynamics. J Taiwan.Inst Chem E 2011; 42: 320-326. https://doi.org/10.1016/j.jtice.2010.07.004
  17. 17.Ayodhya D, Veerabhadram G. A review on recent advances in photodegradation of dyes using doped and heterojunction based semiconductor metal sulfide nanostructures for environmental. Mater Tod Ener. 2018; 9: 83-113. https://doi.org/10.1016/j.mtener.2018.05.007.
  18. 18.Odling G., Robertson N. SILAR BiOI‐Sensitized TiO2 Films for Visible‐Light Photocatalytic Degradation of Rhodamine B and 4‐Chlorophenol. Chem Phys Chem. 2017; 18: 728-735. https://doi.org/10.1002/cphc.201601417.
  19. 19.Pandit VK., Arbuj SS, Pandit YB, Naik SD, Rane SB, Mulik UP, et al. Solar light driven dye degradation using novel organo–inorganic (6,13-pentacenequinone/TiO2) Nano-composite. RSC Adv.2015;5:10326-10331. https://doi.org/ 10.1039/C4RA11920G.
  20. 20.Jamal A, gholapoor A, tabardarzi S. Investigating the application of photocatalysts and nano photocatalysts in removing environmental pollutants and their mechanism of action The first specialized conference on environmental engineering, Tehran University. 2006. https://civilica.com/ doc/11915/.
  21. 21.Viswanathan B. Photocatalytic degradation of dyes: an overview. Curr. Catal. 2018; 7: 1-25. https://doi.org/ 10.2174/ 2211544707666171219161846.
  22. 22.Reza KM, Kurney AS W, Gulshan F. Parameters affecting the photocatalytic degradation of dyes using TiO2: a review. Appl Water Sci. 2017; 7: 1569-1578. https://doi.org/ 10.1007/ s13201-015-0367-y.
  23. 23.Grzechulska J, Morawski A W. Photocatalytic decomposition of azo-dye acid black 1 in water over modified titanium dioxide. Appl. Catal. B Environ. 2002; 36: 45-51. https://doi.org/10.1016/S0926-3373(01)00275-2.
  24. 24.Khammarnia S, Akbari A, Ekrami-Kakhki MS, Saffari J. Synthesis of FeLaO3 and FeNdO3 Magnetic Nanocomposites as Photocatalyst for Organic Dye Removal. J Clust Sci. 2019; 30:1383–1391. https://doi.org/10.1007/s10876-019-01580-1.
  25. 25.Bamer I, Saffari J, Baniyaghoob S, Ekrami-Kakhki MS. Synthesis of magnetic nano-NiFe2O4 with the assistance of ultrasound and its application for photocatalytic degradation of Titan Yellow: Kinetic and isotherm studies. Colloids Interface Sci. Commun. 2022; 48: 100610. https://doi.org/ 10.1016/j.colcom.2022.100610
  26. 26.abbasi S, Hasanpour M, Ekrami-Kakhki MS. Removal efficiency optimization of organic pollutant (methylene blue) with modified multi-walled carbon nanotubes using design of experiments (DOE). J. Mater. Sci: Mater. Electron. 2017; 28: 9900-9910. https://doi.org/ 10.1007/s10854-016-5660-5
  27. 27.Gosavi PV, Biniwale R B. Pure phase LaFeO3 perovskite with improved surface area synthesized using different routes and its characterization. Mater Chem Phys 2010; 119: 324-329. https://doi.org/10.1016/j.matchemphys.2009.09.005Get rights and content.
  28. 28.http://pd.chem.ucl.ac.uk/pdnn/peaks/sizedet.htm.
  29. 29.Ma P, Jiang W, Wang F, Li F, Shen P, Chen M, et .al. Synthesis and photocatalytic property of Fe3O4@TiO2 core/shell nanoparticles supported by reduced graphene oxide sheets. J Alloy Compd. 2013;578:501–506. https://doi.org/ 10.1016/j.jallcom.2013.07.026.
  30. 30.Zhou Q, Fang Z, Li J, Wang M. Applications of TiO2 nanotube arrays in environmental and energy fields: a review. Micropor Mesopor Mater. 2015; 202: 22–35. https://doi.org/10.1016/j.micromeso.2014.09.040.
  31. 31.Rahmani A, Saffari J. Preparation, structure and selected catalytic properties of La2CuO4 nano mixed metal oxides. J Nanostruct. 2016; 6: 301-306. https://doi.org/10.22052/ jns. 2016.34270.
  32. 32.Brunauer S, Emmett PH, Teller E. Adsorption of gases in multimolecular layers. J Am Chem Soc. 1938; 60: 309–19. https://doi.org/10.1021/ja01269a023.
  33. 33.Barrett EP, Joyner LG, Halenda PP. J Am Chem Soc 73 (1951) 373–80. https://doi.org/10.1021/ja01145a126.
  34. 34.Lee WY, Yun HJ, Yoon JW. Characterization and magnetic properties of LaFeO3 nanofibers synthesized by electrospinning. J. Alloys Compd. 2014; 583: 320-324. https://doi.org/10.1016/j.jallcom.2013.08.191.
  35. 35.Ho YS, Chiang TH, Hsueh YM. Removal of basic dye from aqueous solution using tree fern as a biosorbent, Process. Biochem. 2005;40:119-124. https://doi.org/10.1016/j. procbio. 2003.11.035.
  36. 36.Namasivayam C, Thamaraiselvi K, Yamuna RT. Removal of paraquat by adsorption on 'waste'Fe (III)/Cr (III) hydroxide: adsorption rates and equilibrium studies. Pest. Sci. 1994; 41: 7-12. https://doi.org/10.1002/ps.2780410103.
  37. 37.Subbareddy Y, Jeseentharani V, Jayakumar C, Nagaraja KS, Jeyaraj B. Adsorptive removal of Malachite Green (oxalate) by low cost adsorbent. J Environ Res. Develop. 2012;7:275-284.
  38. 38.Ahmad R. Studies on adsorption of crystal violet dye from aqueous solution onto coniferous pinus bark powder (CPBP). Hazard Mater. 2009; 171: 767-773. https://doi.org/ 10.1016/ j.jhazmat.2009.06.060
  39. 39.Kumar A, Pandey G. Synthesis of La:Co:TiO2 Nanocomposite and Photocatalytic Degradation of Tartaric Acid in Water at Various Parameters. Am  Nano Res Appl. 2017; 5: 40-48. https://doi.org/10.11648/j.nano.20170504.11.
  40. 40.Ono Y, Rachi T, Okuda T, Yokouchi M, Kamimot Y, Nakajima A, et.al. Kinetics study for photodegradation of methylene blue dye by titanium dioxide powder prepared by selective leaching method, J Phys Chem Solids. 2012; 73: 343-349. https://doi.org/10.1016/j.jpcs.2011.10.012.
  41. 41.Saeed M, Muneer M, Haq A, Akram N. Photocatalysis: An effective tool for photodegradation of dyes-A review. Environ Sci Pollut Res. 2022; 29: 293–311. https://doi.org/ 10.1021/ acsomega.0c05092.
  42. 42.Gita S, Shukla SP, Deshmukhe G, Choudhury TG, Saharan N., Singh AK. Toxicity Evaluation of Six Textile Dyes on Growth, Metabolism and Elemental Composition (C, H, N, S) of Microalgae Spirulina platensis: The Environmental Consequences. Bull Environ Contam Toxicol. 2021;106: 302–309. https://doi.org/ 10.1007/s00128-020-03074-7.
  43. 43.Fardood ST, Forootan R, Moradnia F, Afshari Z, Ramazani A. Green synthesis, characterization, and photocatalytic activity of cobalt chromite spinel nanoparticles. Mater Res Express 2020;7(1):015086.https://doi.org/10.1088/2053-1591/ ab6c8d.
  44. 44.Kansal SK, Sood S, Umar A, Mehta S. K. Photocatalytic degradation of Eriochrome Black T dye using well-crystalline anatase TiO2 nanoparticles. J. Alloys Compd. 2013; 581: 392-397. https://doi.org/10.1016/j.jallcom.2013.07.069.
  45. 45.Ali N, Said A, Ali F, Razig F, Ali Z,. Bilal M, et.al. Photocatalytic degradation of Congo red dye from aqueous environment using cobalt ferrite nanostructure: Development, characterization, and photocatalytic performance. Water Air Soil Pollution. 2020; 231:1-16. https://doi.org/ 10.1007/ s11270-020-4410-8.
  46. 46.Sun JH, Dong SY, Wang YK, Sun SP. Preparation and photocatalytic property of a novel dumbbell-shaped ZnO microcrystal photocatalyst. J Hazard Mater. 2009; 172: 1520–1526. https://doi.org/10.1016/j.jhazmat.2009.08.022.
  47. Köktürk M, Altinda˘ gF, Ozhan G, Çalimli MH, Nas MS. Textile dyes Maxilon blue 5G and Reactive blue 203 induce acute toxicity and DNA damage during embryonic development of Danio rerio. Comp Biochem Physiol Part C Toxicol Pharmacol. 2021;242:108947.https://doi.org/ 10.1016 /j.cbpc.2020.108947