Evaluation of the Effect of Immersion Time on the Physical Properties of Historical Papers Treated with Cellulose Nanofibers

Document Type : Original Article

Author

Department of Calligraphy and Painting, Faculty of Art, Alzahra University, P.O. Code: 1993893973, Tehran, Iran

Abstract

This study prepared a suspension of cellulose nanofibers with a concentration of 1% by weight with water, and samples were immersed in the treatment material for 30, 60, 90, 120, 150, and 180 seconds. The effect of parameters such as colorimetric, pH, tensile strength and contact angle before and after ageing was performed. The results showed that after treatment, the color of the samples became lighter than the control sample without treatment. But ageing has reduced the brightness of the paper. The color of the treated samples was lighter for 150 and 180 seconds than the other samples. The pH of the samples increased after treatment. The highest pH was related to the sample treated for 150 seconds before and after ageing. The highest tensile strength was obtained before and after ageing by increasing the samples' immersion period for 150 and 180 seconds. The results of measuring the contact angle showed that the treatment of cellulose nanofibers had no effect on increasing the paper resistance to wetting and did not prevent the paper surface from getting wet.

Keywords


  1. Zervos S, Alexopoulou I. Paper conservation methods: a literature review. Cellulose. 2015; 22: 2859-2897. doi.org/10.1007/s10570-015-0699-7. 
  2. Baglioni P, Giorgi R. Soft and hard nanomaterials for restoration and conservation of cultural heritage. Soft. Matter. 2006; 4: 293–303. doi.org/10.1039/B516442G. 
  3. Xarrié M. Glossary of conservation. I. Balaam; 2005.
  4. Dei L, Salvadori B. Nanotechnology in cultural heritage conservation: nanometric slaked lime saves architectonic and artistic surfaces from decay. J Cult Heritage. 2006; 7: 110-115. doi.org/10.1016/j.culher.2006.02.001. 
  5. Vinas V, Vinas R. Traditional restoration techniques: a RAMP study. Paris: UNESCO; 1992. 
  6. Ching Y, Rahman A, Ching K, Sukiman N, Cheng H. Preparation & characterization of PVA based composite reinforced with nanocellulose and nanosilica. BioResources. 2015; 10: 3364-3377. doi.org/10.15376/biores.10.2.3364-3377. 
  7. Turaif A. Relationship between tensile properties and film formation kinetics of epoxy resin reinforced with nanofibrillated cellulose. Progress in Organic Coatings. 2013; 76: 477–481. doi.org/10.1016/j.porgcoat.2012.11.001.   
  8. Ghorbani M, Samanian K, Afsharpour M, Sabet Jazari A. Introducing and Comparing Methods for Consolidation of Paper records and Suggesting the Use of Cellulose Nano-Fibers for Conservation of such records. GANJINE-YE ASNAD. 2017; 26: 110-131. http://ganjineh.nlai.ir/ article_2132.html [In Persian].  
  9. Hassan E, Hassan M, Oksman K. Improvement of paper sheets properties of bagasse pulp with microfibrillated cellulose isolated from xylanase treated bagasse. Wood and Fiber Science. 2011; 43: 1-7. doi.org/10.1016/ j.indcrop.2014.11.004.
  10. Hadilam M, Afra E, Yousefi H, Ghasemian A. Investigate Resistive and barrier against moisture behavior of cellulose paper containing Nanofiber cellulose. First National Conference on Nanotechnology and its Applications in Agriculture and Natural Resources, University of Tehran – Karaj, Faculty of Agriculture and Natural Resources; 2012 [In Persian]. 
  11. Aliniyay Lakani S, Afra E. Nanofiber Cellulose and its Application in Improving Paper Properties, First National Conference on Nanomaterials and Nanotechnology, Islamic Azad University of Shahrood; 2011 [In Persian]. 
  12. Xu S, Girouard N, Schueneman G, Shofner M, Meredith J. Mechanical and thermal properties of waterborne epoxy composites containing cellulose nanocrystals. Polymer Journal. 2013; 54: 6589- 6598. doi.org/10.1016/ j.polymer.2013.10.011.
  13. Lopez-Suevos F, Eyholzer C, Bordeanu N, Richter K. DMA analysis and wood bonding of PVAc latex reinforced with cellulose nanofibrils. Cellulose. 2010; 17: 387-398. doi.org/10.1007/s10570-010-9396-8.
  14. Ramsden J. Nanotechnology in Coatings, Inks and Adhesives. Pira International Ltd. Leatherhead, UK; 2004.
  15. Sequeira S, Casanova C, Cabrita E. Deacidification of paper using dispersions of Ca (OH)2 nanoparticles in isopropanol. Study of efficiency. J Cult Heritage. 2006; 7: 264-272. doi.org/10.1016/j.culher.2006.04.004. 
  16. Lwamoto S, Abe K, Yano H. The Effect of Hemicelluloses on Wood Pulp Nanofibrillation and Nanofiber Network Characteristics. Biomacromolecules. 2008;9:1022–1026. doi.org/10.1021/bm701157n.
  17. Nogi M, Iwamoto S, Nakagaito A, Yano H. Optically Transparent nanofiber paper. Adv Mater. 2009; 16: 1595– 1598. doi.org/10.1002/adma.200803174.
  18. Chauhan V, Chakrabarti S. Use of Nanotechnology for high performance cellulose and papermaking products. Cellul. Chem. Technol. 2012; 6: 389-400. Dor 115141983. 
  19. Baglioni P, Giorgi R. Soft and hard nanomaterials for restoration and conservation of cultural heritage. Soft Matter. 2006; 2: 293–303. doi.org/10.1039/b516442g. 
  20. Cristina B, Brasb J, Williamsa T, Senechalb T, Ortsa W. HPMC reinforced with different cellulose nano-particles. Carbohydr. Polym. 2011;86:1549–1557. doi.org/10.1016/ j.carbpol.2011.06.060.
  21. Moon R, Martini A, Nairn J, Simonsen J, Youngblood J, Cellulose nanomaterials review: structure, properties and nanocompos- ites. Chemical Society Reviews. 2011; 40: 3941–3994. doi.org/10.1039/c0cs00108b.
  22. Lee K, Tammelin T, Kiiskinen H, Samela J, Schlufter K, Bismarck A. High performance cellulose nanocomposites: comparing the reinforcing ability of bacterial cellulose and nanofibrillated cellulose. American Chemical Society. 2012; 4: 4078–4086. doi.org/10.1021/am300852a.
  23. Dreyfuss-Deseigne R. Nanocellulose Films in Art Conservation. Paper Conservation. 2017; 18: 18-29. doi.org/10.1080/18680860.2017.1334422. 
  24. Dreyfuss-Deseigne R. A New Mending Material: Nanocellulose Film. Journal of Paper Conservation. 2017; 18: 36-37. doi.org/10.1080/18680860.2017.1339401.
  25. Volke L, Ahn K, Hahner U, Gindl‑Altmutter W, Potthast A. Nano meets the sheet: adhesive-free application of nanocellulosic suspensions in paper conservation. Heritage science. 2017; 5: 2-17. doi.org/10.1186/s40494-017-0134-5. 
  26. Ghorbani M, Samanian K, Afsharpour M, Sabet Jazari A. Inhibition Behavior of the Cellulose Nanofibers and Hydroxypropyl Cellulose Bio-Nanocomposite A gainst Colour Changes as a Coating on the Paper Documents. Journal of Color Science and Technology. 2018; 12: 147-158. Dor 20.1001.1.17358779.1397.12.2.7.3 [In Persian]. 
  27. Konuklar M, Sacak M. A new method for paper conservation: triple mixture of methyl cellulose, carboxymethyl cellulose and nano-micro calcium hydroxide particles. J Biol Chem. 2011; 39: 403-411. Dor 55672146.
  28. Cocca M, D’Arienzo L, D’Orazio L. Effects of Different Artificial Agings on Structure and Properties of Whatman Paper Samples. Materials Science. 2011; 44: 1-7. doi.org/10.5402/2011/863083.
  29. Standard Test Method for Effect of moist heat on properties of paper and board. TAPPI T 544 sp-03, 2003. 
  30. Holik H. Handbook of paper and board. John Wiley & Sons; 2006.
  31. Standard test methods for Paper, board and pulp- Determination of pH of aqueous extracts- Part 1: Cold extraction. Standard national organization of Iran. 3568-1, 2007 [In Persian].  
  32. Standard test methods for Paper and board - Determination of tensile properties - Part 3: Constant rate of elongation method (100 mm/min)-Test method. Standard national organization of Iran. 14471-3, 2013 [In Persian]. 
  33. Standard test methods for Paper-Determination of surface wettability of paper- angle of contact method, Standard national organization of Iran. 17492, 2013 [In Persian]. 
  34. Havlinova B, Brezova V, Minarikova J, Ceppan M. Investigations of paper aging a search for archive paper. J Mater Sci. 2002;37:303-308.doi.org/10.1023/A: 1013696127691. 
  35. Rosenau T, Potthast A, Krainz K, Yoneda Y, Dietz T, Shields Z, et al. Chromophores in cellulosics, VI. First isolation and identification of residual chromophores from aged cotton linters. Springer Science Business Media. 2011; 18: 1623–1633. doi.org/10.1007/s10570-011-9585-0.
  36. Marieflemay. Iron Gall Ink, http:// www.travelingscrip to rium.library.yale.edu/2013/03/21/iron-gall-ink, accessed online Mar. 2013.
  37. Cocca M, D’Arienzo L, D’Orazio L. Effects of Different Artificial Agings on Structure and Properties of Whatman Paper Samples. International Scholarly Research Notices. 2011; 4: 1-7. doi.org/10.5402/2011/863083.
  38. Durovic M, Dernovskova J, Siroky M. Dispersive glues used for preservation. Restaurator.1991;12:36–74. doi.org/ 10.1515 /rest.1991.12.1.36.
  39. Lwamoto S, Abe K, Yano H. The Effect of Hemicelluloses on Wood Pulp Nanofibrillation and Nanofiber Network Characteristics. Biomacromolecules. 2008; 9: 1022–1026. doi.org/ 10.1021/bm701157n.
  40. Ariafar A, Samanian K, Afsharpour M. Optimization of CMC against microorganism factors with nanoparticles Titanium Deoxide using for promotion of this polymer quality protection in restoration of paper document. Ganjineh Asnad J. 2015; 25: 116-140. http://ganjineh.nlai.ir/article_ 283. html  [In Persian].
  41. Area M, Cheradame H. Paper aging and degradation: recent findings and research methods. BioResources. 2011; 6: 5307-5337. doi.org/10.15376/BIORES.6.4.5307-5337. 
  42. Emsley A, Heywood R, Ali M, Xiao X. Degradation of cellulosic insulation in power transformers, Part 4: Effects of ageing on the tensile strength of paper, IEE Proceedings-Science. Measurement and Technology. 2000; 147: 285-290. doi.org/10.1049/ip-smt:20000644.
  43. Čabalová I, Kačík F, Gojný J, Češek B, Milichovský M, Mikala O, et al. Changes in the chemical and physical properties of paper documents due to natural ageing. BioResources. 2017; 12: 2618-2634. doi.org/10.15376/biores. 12.2.2618-2634. 
  44. Ansari N. Principles and theories physical tests on fibers and textile. 1st Ed. Tehran: Amirkabir University; 2008 [In Persian]. 
  45. Gindl W, Keckes J. All-Cellulose Nanocomposite. Polymer. 2005; 46: 10221-10225. doi.org/10.1016/j.polymer. 2005. 08.040. 
  46. Qanbarzadeh B, Abolqasemi Fakhri L, Dehghannia J, Entezami A. Comparing Permeability, Contact Angle and Thermal Properties of Carboxymethyl Cellulose based Nanocomposite Containing Two Types of Nanofillers: Nanoclay and Cellulose Nanowhiskers. Nashrieh Shimi va Mohandesi Shimi Iran. 2013; 32: 13-24. https://www. nsmsi.ir/article_5580.html?lang=fa [In Persian].