Metakaolin-based Geopolymer Microfiltration Membrane for Removing Dye with Oil Emulsion Method

Document Type : Original Article

Authors

1 School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology, P.O. Code: 16846-13114, Tehran, Iran

2 Department of Chemical Engineering, Amirkabir University of Technology, P.O. Box: 15875-4413, Tehran, Iran

3 Department of Environmental Research, Institute for Color Science &Technology, P.O. Box: 16765-654, Tehran, Iran

Abstract

Geopolymeric membranes were prepared by activating metakaolin using sodium hydroxide and silica fume solutions. The membrane was characterized using X-ray diffraction, Scanning electron microscopy, Fourier transform infrared spectroscopy, mercury intrusion porosimetry, and energy dispersion spectroscopy. The geopolymeric membrane had a porosity percentage of 33.5 and an average pore size of 327.67 nm. The cationic dye methylene blue was removed by emulsion filtration using this membrane. The dye binds to sodium dodecyl sulfate (SDS) as an anionic surfactant and then dissolves in the oil phase of the emulsion. So the dye is extracted from the aqueous solution, and the microfiltration membrane removes the emulsion droplets. The Box-Behnken experimental design was used to optimize the membrane separation performance. Results showed that the permeability was 70.28 L/m2.h.bar under the optimized conditions and a dye removal efficiency of 98.45% was achieved at a feed flow rate of 1.5 l/min, an SDS content of 5.33 %, and a methylene Blue concentration of 100 ppm.

Keywords


  1. Voulvoulis N. Water reuse from a circular economy perspective and potential risks from an unregulated approach. Curr Opin Environ Sci Heal. 2018;2:32–45. https://doi.org/10.1016/j.coesh.2018.01.005.
  2. Bes-Piá A, Iborra-Clar MI, Iborra-Clar A, Mendoza-Roca JA, Cuartas-Uribe B, Alcaina-Miranda MI. Nanofiltration of textile industry wastewater using a physicochemical process as a pre-treatment. Desalin. 2005;178:343–349. https://doi.org/10.1016/j.desal.2004.11.044.
  3. Benosmane N, Boutemeur B, Hamdi SM, Hamdi M. Removal of methylene blue dye from aqueous solutions using polymer inclusion membrane technology. Appl Water Sci. 2022;12:1–11. https://doi.org/10.1007/s13201-022-01627-1.
  4. Huang J, Zhou C, Zeng G, Li X, Niu J, Huang H. Micellar-enhanced ultrafiltration of methylene blue from dye wastewater via a polysulfone hollow fiber membrane. J Memb. Sci. 2010;365:138–144.https://doi.org/10.1016/j.memsci.2010.08.052.
  5. Ebrahimi M, Kujawski W, Fatyeyeva K. fabrication of polyamide-6 membranes—the effect of gelation time towards their morphological, physical, and transport properties. Membranes (Basel). 2022;12.https://doi.org/10.3390/membranes12030315
  6. Mulder M. Basic principles of membrane technology, Boston; London: Kluwer Academic Publishers; 1996.
  7. Oshani F, Allahverd A. Ceramic membranes and their application in treatment of dye containing wastewaters. J Stud Color World. 2018;8(3):71–88.https://doi.org/10.1016/20.1001.1.22517278.1397 
  8. Schwarze M, Schaefer L, Chiappisi L, Gradzielski M. Micellar enhanced ultrafiltration (MEUF) of methylene blue with carboxylate surfactants. Sep Purif Technol. 2018;199:20-26.https://doi.org/10.1016/j.seppur.2018.01. 
  9. Gohil JM, Choudhury RR. Introduction to Nanostructured and Nano-enhanced Materials for Membrane Separation Applications. Elsevier;2021. https://doi.org/10.1016/B978-0-12-813926-4.00038-0.
  10. Abd El-Ghaffar MA, Tieama HA. a review of membranes classifications, configurations, surface modifications, characteristics and its applications in water purification. Chem Biomol Eng. 2017;2:57–82.https://doi.org/10.11648/j.cbe.20170202.
  11. Fard AK, McKay G, Buekenhoudt A, Al Sulaiti H, Motmans F, Khraisheh M, et al. inorganic membranes: preparation and application for water treatment and desalination. Mater. (Basel). 2018;11.https://doi.org/10.3390/ma11010074. 
  12. Sadiq M, Naveed A, Arif M, Hassan S, Afridi S, Asif M, et al. Geopolymerization: A promising technique for membrane synthesis. Mater. Res. Express. 2021;8:112002.https://doi.org/10.1088/2053-1591/ac30e4. 
  13. Maleki A, Mohammad M, Emdadi Z, Asim N, Azizi M, Safaei J. Adsorbent materials based on a geopolymer paste for dye removal from aqueous solutions. Arab J Chem. 2020;13:3017–3025.https://doi.org/10.1016/j.arabjc.2018.08.011. 
  14. Xu MXue, He Y, Liu Zh, Tong Z, Cui X. Preparation of geopolymer inorganic membrane and purification of pulp-papermaking green liquor. Appl. Clay Sci. 2019;168:269–275.https://doi.org/10.1016/j.clay.2018.11.024. 
  15. Zhang Y, Liu L.Fly ash-based geopolymer as a novel photocatalyst for degradation of dye from wastewater.Particuology. 2013;11:353–358. 
  16. Najafi Kani E, Allahverdi A, Provis JL.Efflorescence control in geopolymer binders based on natural pozzolan.Cem.Concr.Compos. 2012;34:25–33. 
  17. Rocha Tda S, Dias DP, França FCC, Guerra RRde S. Marques LRda.Metakaolin-based geopolymer mortars with different.2018;178:453–461.https://doi.org/10.1016/j.conbuildmat.2018.05.172.
  18. Nmiri A, Duc M, Hamdi N, Yazoghli-marzouk O, Srasra E. Replacement of alkali silicate solution with silica fume in metakaolin-based geopolymers. Int. J. Miner. Metall. Mater. 2019;26:555–564.https://doi.org/10.1007/s12613-019-1764-2.
  19. Xu MXue, He Y, Wang CQun, He Xfeng, He Xqing, Liu J, et al. Preparation and characterization of a self-supporting inorganic membrane based on metakaolin-based geopolymers. Appl. Clay Sci. 2015;115:254–259.https://doi.org/10.1016/j.clay.2015.03.019 
  20. Naveed A, Saeed F, Khraisheh M, Al Bakri M, Noor-Ul-Amin, Gul S. Porosity control of self-supported geopolymeric membrane through hydrogen peroxide and starch additives. Desalin. Water Treat. 2019;152:11–15.https://doi.org/10.5004/dwt.2019.23895.
  21. Khattak AN, Amin N, Khraisheh MAM. Desalination and water treatment synthesis and characterization of fly ash based geopolymeric membrane for produced water treatment. Desalin Water Treat. 2019;161:126–131.https://doi.org/10.5004/dwt.2019.24283.
  22. Xua M. X, He Y, Tong ZF, Cui XM.Preparation of geopolymer inorganic membrane and purification of pulppapermaking liquor.Appl Clay Sci. 2019;168:269–275. 
  23. Ge Y, Yuan Y, Wang K, He Y, Cui X.Preparation of geopolymer-based inorganic membrane for removingNi2+from wastewater. J Hazard Mater. 2015;299:711–718.https://doi.org/10.1016/j.clay.2018.11.024.
  24. Cheng H, Lin KL, Cui R, Hwang CL, Chang YM, Cheng TW.The effects of SiO2/Na2O molar ratio on the characteristics of alkali-activated waste catalyst-metakaolin based geopolymers. Constr Build Mater. 2015;95:710–720.https://doi.org/10.1016/j.conbuildmat.2015.07.028.
  25. Duxson P, Provis JL, Lukey GC, Mallicoat SW, Kriven WM, Van Deventer JSJ.Understanding the relationship between geopolymer composition, microstructure and mechanical properties. Colloids Surfaces A Physicochem. Eng. Asp. 2005; 269: 47–58.https://doi.org/10.1016/j.colsurfa.2005.06.060.
  26. Oshani F, Allahverdi A, Kargari A, Norouzbeigi R, Mahmoodi NM. Effect of preparation parameters on properties of metakaolin-based geopolymer activated by silica fume- sodium hydroxide alkaline blend. J Build Eng. 2022;60:104984.https://doi.org/10.1016/j.jobe.2022.104984. 
  27. Davidovits J. Geopolymers Based on Natural and Synthetic Metakaolin a Critical Review: Ceramic Engineering and Science, In: Proceedings of the 41st International Conference on Advanced Ceramics and Composites; Geopolymer Institute;2018.201-214.
  28. Tomczak W, Gryta M.Clarification of 1,3-propanediol fermentation broths by using a ceramic fine UF membrane.Membranes (Basel). 2020;10:319.https://doi.org/10.3390/membranes10110319 
  29. Mah KH, Yussof HW, Seman MNA, Jalanni NA, Zainol N. Study on factors affecting separation of xylose from glucose by nanofiltration using composite membrane developed from triethanolamine (TEOA) and trimesoyl chloride (TMC). J Eng Sci Technol. 2015;10:92–100.https://doi.org/10.1039/C6RA12628F.
  30. Ullah M, Shah LA, Sayed M, Siddiq M, Amin NU. Micellar supported ultrafiltration of malachite green: experimental verification of theoretical approach. Zeitschrift Fur Phys Chemie. 2019;233:289–301.https://doi.org/10.1515/zpch-2017-1068.
  31. Zhang Z, Wang H, Provis JL, Bullen F, Reid A, Zhu Y. Quantitative kinetic and structural analysis of geopolymers.Part 1.the activation of metakaolin with sodium hydroxide. Thermochim Acta. 2012;539:23–33.https://doi.org/10.1016/j.tca.2012.03.021.
  32. Khale D, Chaudhary R.Mechanism of geopolymerization and factors influencing its development: A review J Mater Sci. 2007;42:729–746.https://doi.org/10.1007/s10853-006-0401-4.
  33. Chen L, Wang Z, Wang Y, Feng J. Preparation and properties of alkali activated metakaolin-based geopolymer membranes for gas separation applications. J Membr Sci. 2018;549:1–9.https://doi.org/10.3390/ma9090767.
  34. Ivanović M, Kljajević Lj, Nenadović M, Bundaleski N, Vukanaca I, Todorović B, et al. Physicochemical and radiological characterization of kaolin and its polymerization products. Mater. de Construccion. 2018;68:1-10. https://doi.org/10.3989/mc.2018.00517. 
  35. Nmiri A, Yazoghli-marzouk O, Duc M. Temperature effect on mechanical and physical proprieties of na or k alkaline silicate activated metakaolin-based geopolymers. Ital J Eng Geol Environ. 2016;1(16):5-15.https://doi.org/10.4408/IJEGE.2016-01.O-01. 
  36. PimraksaID K, Setthaya N, Thala M, Chindaprasirt P, MurayamaID M. Geopolymer/ Zeolite composite materials with adsorptive and photocatalytic properties for dye removal. PLoS One. 2020;15.https://doi.org/10.1371/journal.pone.0241603 
  37. Wan Q, Rao F, Song S, García RE, Estrella RM, Patiño CL, et al.Geopolymerization reaction, microstructure and simulation of metakaolin-based geopolymers at extended Si/Al ratios. Cem Concr Compos.2017;79:45-52.https://doi.org/10.1016/ j.cemconcomp.2017.01.014. 
  38. Dutta D, Thokchom S, Ghosh P, Ghosh S.Effect of silica fume additions on porosity of fly ash geopolymers. J Eng Appl Sci. 2010;5:74–79.
  39. Davidovits J, Resins G.Geopolymer chemistry and sustainable Development.The Poly ( sialate ) terminology : a very useful and simple model for thepromotion and understanding of green-chemistry. In: Geopolymer Green Chemistry and Sustainable Development Solutions, Geopolymer 2005 Conference, Saint-Quentin, France: Geopolymer Institute;2005.9-16.
  40. Tohidian E, Zokaee Ashtiani F, Kargari A.Optimization of the condition for the fabrication of a two-layer integrated skin polyetherimide nanofiltration membrane. J Water Process Eng. 2020;34:101176.https://doi.org/10.1016/j.jwpe.2020.101176  
  41. Sadeghian M, Sadeghi M, Hesampour M, Moheb A. Application of response surface methodology (RSM) to optimize the preparation of a novel composite membrane based on polyethersulfone (PES) and graphene oxide (GO) for gas separation applications. J Membr Sci. 2022;643:119-131.https://doi.org/10.1080/19443994.2014.919607.
  42. Salar-García MJ, de Ramón-Fernández A, Ortiz-Martínez VM, Ruiz-Fernández D, Ieropoulos I. Towards the optimisation of ceramic-based microbial fuel cells: A three-factor three-level response surface analysis design. Biochem Eng J. 2019;144:119–124.https://doi.org/10.1016/j.bej.2019.01.015. 
  43. Raya SA, Mohd Saaid I, Abbas Ahmed A, Abubakar Umar A. A critical review of development and demulsification mechanisms of crude oil emulsion in the petroleum industry. J Pet Explor Prod Technol. 2020;10:1711–1728.https://doi.org/10.1007/s13202-020-00830-7.
  44. Zeng GM, Li X, Huang JH, Zhang C, Zhou CF, Niu J, et al. Micellar-enhanced ultrafiltration of cadmium and methylene blue in synthetic wastewater using SDS. J Hazard Mater. 2011;185:1304–1310.https://doi.org/10.1016/j.jhazmat.2010.10.046.
  45. Chen P, Ma X, Zhong Zh, Zhang F, Xing W, Fan Y.Performance of ceramic nanofiltration membrane for desalination of dye solutions containing NaCl and Na2SO4.Desalin. 2017;404:102–111.http://dx.doi.org/10.1016/j.desal.2016.11.014.
  46. Zaghbani N, Hafiane A, Dhahbi M.Separation of methylene blue from aqueous solution by micellar enhanced ultrafiltration. Sep Purif Technol. 2007;55:117–124. http://dx.doi.org/10.1016/j.seppur.2006.11.008.