Role of Interphase Region on Electrical Conductivity of Epoxy-Reduced Graphene Oxide Nanocomposites

Document Type : Original Article

Authors

1 Faculty of Polymer Engineering, Sahand University of Technology, P.O. Box: 51335-1996, Tabriz, Iran

2 Institute of Polymeric Materials, Sahand University of Technology, P.O. Box: 51335-1996, Tabriz, Iran

3 Department of Surface Coating and Corrosion, Institute for Color Science and Technology, P. O. Box: 167654-654, Tehran, Iran

Abstract

By varying the level of graphene's surface oxidation in this paper, the thickness of the interphase region was altered, and its influence on the conductivity was investigated. Due to the similarity of water-based epoxy chemical groups with graphene oxide oxygen groups, the interphase region was reinforced. Infrared spectroscopy and thermal gravimetry were performed to evaluate the graphene oxide synthesis, and Raman spectroscopy was also performed to investigate the structural defects on graphene sheets. At first glance, based on the interphase region theory, it is expected that by increasing the oxidation rate of graphene nanosheets, the electrical conductivity of polymeric coatings will increase, and the percolation threshold will decrease. On the other hand, due to increased oxidation, the structural defect on graphene nanosheets increases, and the conductivity of the coatings is expected to decrease. Due to the opposite effect of the two factors mentioned above, the effectiveness of nanocomposite samples was studied, and the impressment of each factor was investigated in this project.

Keywords


  1. C. W. Lou, C. L. Huang, Y. J. Pan, Z. I. Lin, X. M. Song, J. H. Lin Crystallization, mechanical, and electromagnetic properties of conductive polypropylene/SEBS composites. J. Polym. Res. 2016 May 1;23(5):84.
  2. J. M. Thomassin, C. Jerome, T. Pardoen, C. Bailly, I. Huynen, C. Detrembleur, Polymer/carbon based composites as electromagnetic interference (EMI) shielding materials. Mater. Sci. Eng: R: Reports. 2013 Jul 1;74(7):211-32.
  3. S. T. Hsiao, C. C. Ma, H. W. Tien, W. H. Liao, Y. S. Wang, S. M. Li, Y. C. Huang, Using a non-covalent modification to prepare a high electromagnetic interference shielding performance graphene nanosheet/water-borne polyurethane composite. Carbon. 60(2013), 57-66.
  4. M. Drubetski, A. Siegmann, M. Narkis, Electrical properties of hybrid carbon black/carbon fiber polypropylene composites. J. Mater. Sci. 1;42(2007):1-8.  
  5. M. Raei Nayini, M. Jalili, Z. Ranjbar, Printed electronics, based on carbon nanotubes and graphene nanosheets. J. Stud. Color World, 10(2020): 29-42. [In Persian]
  6. X. Ouyang, W. Huang, E. Cabrera, J. Castro, L. J. Lee, Graphene-graphene oxide-graphene hybrid nanopapers with superior mechanical, gas barrier and electrical properties. Aip Adv. 5(2015):017135.
  7. A. R. Moghaddam, Z. Ranjbar, Dispersion and dispersion stability of graphene in aqueous media for waterborne coating application, Handbook of waterborne coatings, Elsevier, 2020, 103-123
  8. O. Moradi, S. Taghavi, S. Sedaghat, Synthesis and characterization of nanocomposites of biodegradable polymers based on chitin, alginic, Sr, SiO2 and graphene oxide nanoparticles to remove some colored contaminants, J. Color Sci. Tech. 16(2022), 185-195. [In Persian].
  9. R. F. Gibson, A review of recent research on mechanics of multifunctional composite materials and structures. Composite structures. 2010 Nov 1;92(12):2793-810.
  10. M. Behl, M.Y. Razzaq, A. Lendlein, Multifunctional shape‐memory polymers. Advanced materials. 22(2010):3388-410.
  11. H. Pang, L. Xu, D. X. Yan, Z.M. Li, Conductive polymer composites with segregated structures. Prog. Polym. Sci. 39(2014), 1908-33.
  12. M. Rahmat, P. Hubert, Carbon nanotube–polymer interactions in nanocomposites: a review. Compos. Sci. Tech. 72(2011), 72-84.
  13. C. K. Chiang, J. R. Fincher, Y. W. Park, A. J. Heeger, H. Shirakawa, E. J. Louis, S. C. Gau, A. G. MacDiarmid, Electrical conductivity in doped polyacetylene. Physical review letters. 39(1977), 1098.
  14. A.R. Moghaddam, Z. Ranjbar, U. Sundararaj, A. Jannesari, M. Kamkar, A novel electrically conductive water borne epoxy nanocomposite coating based on graphene: facile method and high efficient graphene dispersion. Prog. Org. Coat. 136(2019), 105223.
  15. T. W. Ebbesen, H. J. Lezec, H. Hiura, J. W. Bennett, H. F. Ghaemi, T. Thio, Electrical conductivity of individual carbon nanotubes. Nature.382(1996), 54-6.
  16. Zhang G, Wen M, Wang S, Chen J, Wang J. Insights into thermal reduction of the oxidized graphite from the electro-oxidation processing of nuclear graphite matrix. RSC advances. 2018;8(1):567-79.
  17. B. Mazela, A. Batista, W. Grześkowiak, Expandable Graphite as a Fire Retardant for Cellulosic Materials-A Review. Forests. 11(2020), 755.
  18. O. Jankovský, P. Marvan, M. Nováček, J. Luxa, V. Mazanek, K. Klímová, D. Sedmidubský, Z. Sofer, Synthesis procedure and type of graphite oxide strongly influence resulting graphene properties. Appl. Mater. Today. 4(2016), 45-53.
  19. D. H. Yi, H. J. Yoo, J. W. Cho, Mechanical and photothermal shape memory properties of in-situ polymerized hyperbranched polyurethane composites with functionalized graphene. Fibers Polym. 16(2015), 1766-1771.
  20. K. Zhou, Y. Zhu, X. Yang, X. Jiang, C. Li, Preparation of graphene–TiO2 composites with enhanced photocatalytic activity. New J. Chem. 35(2011), 353-359.
  21. Y. Zhang, Pan C. TiO2/graphene composite from thermal reaction of graphene oxide and its photocatalytic activity in visible light. J. Mater. Sci. 2011 Apr 1;46(8):2622-2626.
  22. T. Kuila, S. Bose, A. K. Mishra, P. Khanra, N. H. Kim, J. H. Lee, Chemical functionalization of graphene and its applications. Prog. Mater. Sci. 57(2012), 1061-1105.
  23. M. Ganjaee Sari, M. Rostami, S. Khamseh, Poly(amidoamine)-grafted Graphene Oxide/Epoxy Nanocomposite: Thermal/ Mechanical Characteristics and Viscoelastic Properties. Prog Color, Colorants Coat. 15(2022); 157-174.
  24. Y. Li, H. Zhang, H. Porwal, Z. Huang, E. Bilotti, T. Peijs, Mechanical, electrical and thermal properties of in-situ exfoliated graphene/epoxy nanocomposites. Composites Part A. 95(2017), 229-236.
  25. H. Kim, C. W. Macosko, Morphology and properties of polyester/exfoliated graphite nanocomposites.
  26. X. Sheng, D. Xie, W. Cai, X. Zhang, L. Zhong, H. Zhang, In situ thermal reduction of graphene nanosheets based poly (methyl methacrylate) nanocomposites with effective reinforcements. Ind. Eng. Chem. Res. 54(2015), 649-658.
  27. T. Ramanathan, A. A. Abdala, S. Stankovich, D. A. Dikin, M. Herrera-Alonso, R. D. Piner, D. H. Adamson, H. C. Schniepp, X. R. Chen, R. S. Ruoff, S. T. Nguyen, Functionalized graphene sheets for polymer nanocomposites. Nat. Nanotechnol. 6(2008), 327-331.
  28. S. Maiti, S. Suin, N. K. Shrivastava, B. B. Khatua, Low percolation threshold in polycarbonate/multiwalled carbon nanotubes nanocomposites through melt blending with poly (butylene terephthalate). J. Appl. Polym. Sci. 130(2013), 543-553.
  29. Y. Zare, K. Y. Rhee, Development of a model for electrical conductivity of polymer/graphene nanocomposites assuming interphase and tunneling regions in conductive networks. Ind. Eng. Chem. Res. 56(2017), 9107-9115