Extraction of Bioactive Compounds From Jujube Fruit with Ultrasonic Waves and Optimization of Carpet Piles Dying Process by RSM

Document Type : Original Article

Author

Department of Art, Semnan University, P.O. Box: 35131-19111, Semnan, Iran

Abstract

Plant dyes have been used in the dyeing process of persian carpets for many years. In this study, jujube fruit, a new source of plant dye, was introduced, and its dyeability on wool yarn was investigated. The results showed that jujube is a vast source of bioactive compounds and can be considered as a good candidate for wool dying without any mordants. Response surface methodology was applied to optimize the natural dying process and investigate the simple and simultaneous effects of the main parameters. Results also showed that the value of the correlation coefficient of the model was high (97.60 %), and there was a low difference between the experimental color strength value and the predicted value (0.64 %). So, the RSM method could predict and optimize the wool dyeing process with few experiments. Jujube was found to have agronomic potential as a natural dye in wool dying, producing good fastness properties without any mordants.  

Keywords


  1. M. Montazer, M. Veysian, M. Heydari, Naturalism in dyeing of protein fibers (wool and silk). Iranian National Carpet Center, Tehran. )2009(, 1-10.
  2. S. Afshar, Dyeing with natural dyes, PNUP Publishers of Tehran. 2006, 3-8.
  3. S. Baseri, Ecological dyeing of cotton fabric with Matricariarecutita L. in the presence of human hair keratins as an alternative copartner to metallic mordants. Sustainable Mater.Technol. 32(2022),e00405.
  4. F. Mardasi, Technology as a Challenge for Hand-woven Carpet, Goljaam. 8(21) (2012), 9-16. 
  5. M. Montazer, M. Parvinzadeh. Effect of ammonia on madder-dyed natural protein fiber. J. Appl. Polym. Sci. 93(2004) 2704-2710.
  6. A. Cerrato, D. Santis, D. M. Moresi. Production of Luteolin extracts from Reseda Luteola and assessment of their dyeing properties. J. Sci. Food Agric. 82(2002),1189-1199.
  7. H. Tawizi. Jujube: planted, had and harvested, Agricultural Education affiliated to the Office of Educational Technology Services of the Ministry of Agricultural Jihad, 2017. 
  8. H. Khakdaman, A. Pourmeidani, S. M. Adnani. Study of genetic variation in Iranian Jujube (Zizyphus jujuba Mill.) ecotypes. Iran. J. Rangelands and Forests Plant Breeding and Genetic Res.14(4) (2007), 202-214. 
  9. T. Bao, M. Zhang, Y. Zhou, W. Chen, Phenolic profile of jujube fruit subjected to gut microbiota fermentation and its antioxidant potential against ethyl carbamateinduced oxidative damage. J. Zhejiang Univ. Sci. B.22(5) (2021), 397–409. 
  10. B. N. Wang, H. F. Liu, J. B. Zheng, M. T. Fan, W. Cao, Distribution of Phenolic Acids in Different Tissues of Jujube and Their Antioxidant Activity. J. Agric. Food Chem.  59(4) (2011), 1288–1292. 
  11. A. Zargari.Medicinal plants (volume 1). University of Tehran Printing and Publishing Institute. Tehran. 1992.
  12. M. Morovatisharifabad, E. Salehi, A. Falahatidevin, Study of the effect of juvenile fruit juice extract on serum cholesterol and serum triglyceride concentration in Wistar rats. Iran. J. Vet. Clin. Sci. 14(2) (2021), 1-38. 
  13. G. Davarynejad, S. F. Taghizadeh, J. Asili, Effect of different solvents on total phenolic contents and antioxidant activity of zizyphus jujube miller fruits. J. Hortic. Sci. 31(1) (2017), 158-166.  
  14. K. Ashrafi, E. Esmaeili, N. Shahinfard, R. Ansari, N. Parvin, A. Namjou, S. Borjian, H. Shirzad, Sh. Mansouri, M. Rafieian, The effect of hydroalcoholic extract of zizipus vulgaris l. on burn healing. J. Shahrekord Univ. Med. Sci. Winter, 12(4) (2011), 78-82.
  15. F. Moghaddam, J. Sargolzaei, Sh. Bolourian, Optimization of phenolic compounds extraction of ziziphus jujuba using supercritical fluid of carbon dioxide and measurement of its antioxidant activity. Iran. Food. Sci. Tech. Res. J. 15(5) (2020), 529-542. 
  16. T. Bechtold, R. Mussak, Natural colourants–quinoid, naphthoquinoid and anthraquinoid dyes, In Handbook of natural colorants. (2009), 151–182.
  17. F. Aynehchee, M. Bagherzadeh Kasiri, K. Gharanjig, Study and optimization of extraction of dye from weld with ultrasonic waves assisted extraction (Uae). J. Color. Sci. Tech. 12(2) (2018), 115-124. [In Persian]
  18. A. Shotipruk, P. B. Kaufman, Feasibility study of repeated harvesting of menthol from biologically viable Menthaxpiperata using ultrasonic extraction. Biotechnol Prog. 17(5) (2001), 924-928.
  19. S. Hemwimon, P. Pavasant, A. Shotipruk. Microwave-assisted extraction of antioxidative anthraquinones from roots of Morindacitrifolia. Sep. Purif. Technol. 54 (2007), 44–50.
  20. S. Baseri, S. Ahmadzadeh, Ecofriendly antibacterial dyeing of wool using sichka gall. J. Color. Sci. Tech. 16(1401),109-122. [In Persian]
  21. J. Wang, B. Sun, Y. Cao, Y. Tian, X. Li, Optimisation of ultrasound-assisted extraction of phenolic compounds from wheat bran. Food Chem.106(2) (2008), 804-810.
  22. J. Rosangela, F. Lisiane, P. Valeria, D., Claudio, O. Ana Paula, O., Jose, The use of ultrasound in the extraction of Ilex paraguariensis leaves: a comparison with maceration. Ultrason. Sonochem. 14(2007), 6-12.
  23. K. Rajbhar, H. Dawda, U. Mukundan, Polyphenols: Methods of extraction. Sci. Revs. Chem. Commun. 5(1) )2015), 1-6. 
  24. A. A. Vilas-Boas, D. A. Campos, C. Nunes, S. Ribeiro, J. Nunes, A. Oliveira, M. Pintado, Polyphenol extraction by different techniques for valorisation of non-compliant portuguese sweet cherries towards a novel antioxidant extract. Sustainability,12(2020), 12. 
  25. A. R. Khataee, G.Dehghan, E. Ebadi, Pourhassan, Central composite design optimization of biological dye removal in presence of macroalgae chara sp. Clean-Soil, Air, Water. 38(2010), 750-757.
  26. H. P. Makkar, Effects and fate of tannins in ruminant animal adaptation to tannins and strategies to overcome detrimental effect of feeding tannin-rich feed. Small Ruminant Res. 49(2003), 241-256. 
  27. H. Rostami, SM. Gharibzahedi, Microwave-assisted extraction of jujube polysaccharide: optimization, purification and functional characterization. Carbohydr. Polym. 143(2016), 100-107.  
  28. M. R. Shahparvari, S. Safapour, K.Gharanjig, Study on kinetic behavior and dyeability of woolen yarn with madder and cochineal natural dyes. J. Color. Sci. Tech. 10(3) (2016), 195-206. [In Persian]
  29. M. Ghorbani, M. Aboonajmi, M. Ghorbani Javid, A. Arabhosseini, Effect of ultrasound extraction conditions on yield and antioxidant properties of the fennel seed (foeniculum vulgare) extract. Iran. J. Food. Sci. Tech. 14(67) (2017), 63-73.
  30. M. Westwood, Working fruit in temperate regions (Translation Y. Rasool zadegan). )1992(, Isfahan University Press.  
  31. A. Khirakhosyan, P. Kaufman, S. Warber, S. Zick, K. Aaronson, S. Bolling, S. C. Change. Applied environmental stresses to enhance the levels of polyphenolics in leaves of hawthorn plants. Physiol. Plant. 121)2004), 182-186. 
  32. Q. Chang, Z. Zuo, F. Harrison, M. S. Chow, Howthorn. J. Clin. Pharmacol.  42(2002), 605-612.
  33. M. Yusuf, F. Mohammad, M. Shabbir, Eco-friendly and effective dyeing of wool with anthraquinone colorants extracted from rubia cordifolia roots: optimization, colorimetric and fastness assay. J. King Saud Univ. - Sci. 29(2017), 137-144. 
  34. F. Eser, A. S. Yaglioglu, M. Dolarslan, E. Aktas, A. Onal, Dyeing, fastness, and cytotoxic properties, and phenolic constituents of Anthemistinctoria var. tinctoria (Asteraceae). J. Text. Inst. 108 (2017), 1489-1495