1. S. Kachbouri, E. Elaloui, Y. Moussaou, the effect of surfactant chain length and type on the photocatalytic activity of mesoporous TiO2 nanoparticles obtained via modified sol-gel process. Iran. J. Chem. Chem. Eng. 38 (2019), 17-26.
2. H. Q. Sun, Y. Bai, W. Q. Jin, N. P. Xu, Visible-light-driven TiO2 catalysts doped with lowconcentration nitrogen species. Sol. Energy Mater Sol. Cells. 92 (2008), 76-83.
3. C. C. Chen, P. X. Lei, H. W. Ji, W. H. Ma, J. C. Zhao, H. Hidaka, N. Serpone, Photocatalysis by titanium dioxide and polyoxometalate/TiO2 cocatalysts. Intermediates and mechanistic study. Environ. Sci. Technol. 38 (2004), 329-337.
4. B. Rani, S. Punniyakoti, N. K. Sahu, Polyol asserted hydrothermal synthesis of SnO2 nanoparticles for the fast adsorption and photocatalytic degradation of methylene blue cationic dye. New J. Chem. 42 (2018), 943-954.
5. X. Li, J.L Shi, H. Hao, X. Lang, Visible light-induced selective oxidation of alcohols with air by dye-sensitized TiO2 photocatalysis. Appl. Catal. B. 235 (2018), 260-267.
6. S. Liang, L. Wen, S. Lin, J. Bi, P. Feng, X. Fu, L. Wu, Monolayer HNb3O8 for Selective Photocatalytic Oxidation of Benzylic Alcohols with Visible Light Response. Angew. Chem. Int. 53 (2014), 2951-2955.
7. Y. Gao, H. Xu, S. Zhang, Y. Zhang, C. Tang, W. Fan, Visible-light photocatalytic aerobic oxidation of sulfides to sulfoxides with a perylene diimide photocatalyst, Org. Biomol. Chem. 17 (2019), 7144-7149.
8. J. Jiang, R. Luo, X. Zhou, Y. Chen, H. Ji, Photocatalytic properties and mechanistic insights into visible light‐promoted aerobic oxidation of sulfides to sulfoxides via Tin porphyrin‐based porous aromatic frameworks. Adv. Synth. Catal. 360 (2018), 4402-4411.
9. L. Zhang, G. Wang, X. Hao, Z. Jin, Y. Wang, MOFs-derived Cu3P@ CoP pn heterojunction for enhanced photocatalytic hydrogen evolution. Chem. Eng. J. 395 (2020), 125113-125125.
10.Z. Jin, H. Wang, Q. Ma. High electron conductivity of Ni/Ni3C nanoparticles anchored on c-rich graphitic carbon nitride for obviously improving hydrogen generation. Ind. Eng. Chem. Res. 59 (2020), 8974-8983.
11.Z. Jin, L. Zhang, Performance of Ni-Cu bimetallic co-catalyst g-C3N4 nanosheets for improving hydrogen evolution. Sci. Technol. 49 (2020), 144-156.
12.H. Sun, S. Liu, S. Liu, S. Wang, A comparative study of reduced graphene oxide modified TiO2, ZnO and Ta2O5 in visible light photocatalytic/photochemical oxidation of methylene blue. Appl. Catal. B. 146 (2014), 162-168.
13.H. Sun, G. Zhou, S. Liu, H. M. Ang, M. O. Tadé, S. Wang, Visible light responsive titania photocatalysts codoped by nitrogen and metal (Fe, Ni, Ag, or Pt) for remediation of aqueous pollutants. Chem. Engin. J. 231 (2013), 18-25.
14.O. Ounas, B. Lekhlif, J. Jamal-Eddine, Effect of three operating variables on degradation of direct blue 199 by TiO2 immobilized into a polymer surface: Response surface methodology. Prog. Color Colorants Coat. 14 (2021), 161-178.
15.F. Shokoofehpoor, S. H. Mousavi, A. Mohammadi, M. A. Zanjanchi, γ-CD-Functionalized TiO2 Nanoparticles for the Photocatalytic Degradation of Organic Dyes. Prog. Color Colorants Coat. 13 (2020), 23-39.
16.A. Mehrizad, P. Gharbani, Photocatalytic Degradation of rhodamine 6G by Sm Doped-CdS nanoparticles under visible light. J. Color Sci. Tech. 13 (2019), 201-210.
17.M. Honarmand, M. Golmohammadi, J. Hafezi Bakhtiari. Green synthesis of SnO2 Nanoparticles on Bentonite and study of its photocatalytic activity for degradation of eriochrome black T. J. Color Sci. Tech. 14 (2020), 247-254.
18.A. D. Khalaji, Use of CuO/Cu2O nanocomposite to removal of methyl orange dye from aqueous solution. J. Color. Sci. Tech. (2021), JCST-2101-1127.
19.Z. karimi, A. Allahverdi, F. Oshani1, Investigation on the removal of dyes from wastewater using alumina composite nano adsorbent. J. Stud. Color World. 10 (2020), 41-59.
20.Z. Khan, T. R. Chetia, M. Qureshi, Rational design of hyperbranched 3D heteroarrays of SrS/CdS: synthesis, characterization and evaluation of photocatalytic properties for efficient hydrogen generation and organic dye degradation. Nanoscale. 4 (2012), 3543-3550.
21.Z. G. Xiong, L. L. Zhang, J. Z. Ma, X. S. Zhao, Photocatalytic degradation of dyes over graphene-gold nanocomposites under visible light irradiation. Chem. Comm. 46 (2010), 6099-6101.
22.M. Groenewolt, M. Antonietti, Synthesis of g-C3N4 nanoparticles in mesoporous silica host matrices. Adv. Mater. 17 (2005), 1789-1790.
23.X. C. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J. M. Carlsson, K. Domen, M. Antonietti, A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 8 (2009), 76-80.
24.A. Troupis, A. Hiskia, E. Papaconstantinou, Synthesis of metal nanoparticles by using polyoxometalates as photocatalysts and stabilizers. Angew. Chem., Int. Ed. 41 (2002), 1911-1912.
25.W. Liu, W. Mu, M. J. Liu, X. D. Zhang, H. L. Cai, Y. L. Deng, Solar-induced direct biomass-to electricity hybrid fuel cell using polyoxometalates as photocatalyst and charge carrier. Nat. Comm. 5 (2014), 1-8.
26.A. Pearson, H. D. Zheng, K. Kalantar-zadeh, S. K. Bhargava, V. Bansal, Decoration of TiO2 nanotubes with metal nanoparticles using polyoxometalate as a UV-switchable reducing agent for enhanced visible and solar light photocatalysis. Langmuir. 28 (2012), 14470-14475.
27.X. L. Wang, Z. H. Chang, H. Y. Lin, A. X. Tian, G. C. Liu, J. W. Zhang, Assembly and photocatalysis of two novel 3D Anderson-type polyoxometalate-based metal organic frameworks constructed from isomeric bis(pyridylformyl) piperazine ligands. Dalton Transac. 43 (2014), 12272-12278.
28.J. Ahmadpour, M. Taghizadeh, Selective production of propylene from methanol over high-silica mesoporous zsm-5 zeolites treated with naoh and naoh/ tetrapropylammonium hydroxide. C. R. Chim. 18 (2015), 834-847.
29.S. Abelló, A. Bonilla, J. Pérez-Ramírez, Mesoporous ZSM-5 Zeolite Catalysts prepared by desilication with organic hydroxides and comparison with naoh leaching. Appl. Catal. A. 364 (2009), 191-198.
30.Q. Yu, X. Meng, J. Liu, C. Li, Q. Cui, A fast organic template-free, ZSM-11 seed-assisted synthesis of ZSM-5 with good performance in methanol-to-olefin. Microporous Mesoporous Mater. 181 (2013), 192-200.
31.Z. Hu, H. Zhang, L. Wang, H. Zhang, Y. Zhang, H. Xu, W. Shen, Y. Tang, Highly stable boron-modified hierarchical nanocrys talline ZSM-5 zeolite for the methanol to propylene reaction. Catal. Sci. Technol. 4 (2014), 2891-2895
32.T. Dong-Ge, C. Wei, L. Yong-Yue, J. Xiao-Yang, H. Yi, Effect of crystallinity on the catalytic performance of amorphous Co–B particles prepared from cobalt nitrate and potassium borohydride in the cinnamaldehyde hydrogenation. J. Mol. Catal. A: Chem. 265 (2007), 195–204.
33.L. Ye, J. Liu, Z. Jiang, T. Peng, L. Zan, Facets coupling of BiOBr-g-C3N4 composite photocatalyst for enhanced visible-light-driven photocatalytic activity. Appl. Catal. B. 142 (2013), 1–7.
34.H. Wu, M. Zhou, Y. Qu, H. Li, H. Yin, Preparation Chemical Society Reviews and Characterization of tungsten-substituted molybdophosphoric acids and catalytic cyclodehydration of 1,4-butanediol to tetrahydrofuran. Chinese J. Chem. Eng. 17 (2009), 200-206.
35.Y. J. Zhang, A. Thomas, M. Antonietti, X. C. Wang, Activation of carbon nitride solids by protonation: morphology changes, enhanced ionic conductivity, and photoconduction experiments. J. Am. Chem. Soc. 131 (2009), 50-51.
36.F. R. Pomilla, F. Fazlali, E. I. García-Lopez, G. Marcì, A. R. Mahjoub, I. Kritsov, L F. Liotta, L. Palmisano, Keggin heteropolyacid supported on BN and C3N4: Comparison between catalytic and photocatalytic alcohol dehydration. Mater. Sci. Semicond. Process. 112 (2020), 104987.
37.K. Li, Z. Zeng, L. Yan, S. Luo, X. Luo, M. Huo, Y. Guo, Fabrication of platinum-deposited carbon nitride nanotubes by a one-step solvothermal treatment strategy and their efficient visible-light photocatalytic activity. Appl. Catal. B. 165 (2015), 428-437.
38.S. Patnaik, S. Martha, G. Madras, K. Parida, the effect of sulfate pre-treatment to improve the deposition of Au-nanoparticles in a gold-modified sulfated g C3N4 plasmonic photocatalyst towards visible light induced water reduction reaction. Phys. Chem. Chem. Phys. 18 (2016), 28502-28514.
39.Y. Hua, C. Wang, J. Liu, B. Wang, X. Liu, C. Wu, X. Liu Visible photocatalytic degradation of rhodamine B using Fe (III)-substituted phosphotungstic heteropolyanion. J. Mol. Catal. A: Chem. 365 (2012), 8–14.
40.Q. J. Xiang, J. G. Yu, W. G. Wang, M. Jaroniec, Nitrogen self-doped nanosized TiO2 sheets with exposed 001 facets for enhanced visible-light photocatalytic activity. Chem. Commun. 47 (2011), 6906–6908.
41.A. Nikoonahad, B. Djahed, S. Norzaee, H. Eslami, Z. Derakhshan, M. Miri, Y. Fakhri, E. Hoseinzadeh, S. M. Ghasemi, D. Balarak, R. A. Fallahzadeh, M. Zarrab, M. Taghavi, An overview report on the application of heteropoly acids on supporting materials in the photocatalytic degradation of organic pollutants from aqueous solutions. PeerJ. 6 (2018), 1-20.
42.J. H. Espenson, Chemical kinetics and reaction mechanisms New York: McGraw-Hill. 102 (1995), 296. (1995).
43.M. A. Zazouli, D. Balarak, Y. Mahdavi, M. Barafrashtehpour, M. Ebrahimi, Adsorption of bisphenol from industrial wastewater by modified red mud. J. Health Development. 2 (2013), 1-11.
44.A. F. Bertocchi, M. Ghiani, R. Peretti, A Zucca, Red mud and fly ash for remediation of mine sites contaminated with As, Cd, Cu, Pb and Zn. J. Hazard. Mater. 134 (2006), 112-119.
45.T. V. N. Padmesh, k. Vijayaraghavan, G. Sekaran, M. Velan, Application of Azolla rongpong on biosorption of acid red 88, acid green 3, acid orange 7 and acid blue 15 from synthetic solutions. Chem. Eng. J. 122 (2006), 55–63.
46.A. Asfaram, M. R. Fathi, Removal of direct red 12b dye from aqueous solutions by wheat straw: isotherms, kinetics and thermodynamic studies. J. Color Sci. Tech. 7 (2014), 223-235.
47.B. Kakavandi, R. R. Kalantary, A. Esrafily, A. Jonidi Jafari, Isotherm, kinetic and thermodynamic of reactive blue 5 (rb5) dye adsorption using Fe3O4 nanoparticles and activated carbon magnetic composite. J. Color Sci. Tech. 7(2014), 237-248.