Evaluation of BFO/g-C3N4 Nanocomposite Efficiency on Photocatalytic Removal of Congo Red Dye

Document Type : Original Article

Authors

1 Department of Chemistry, Science and Research Branch, Islamic Azad University, P.O. Box: 775/14515, Tehran, Iran

2 Department of Chemistry, Ahar Branch, Islamic Azad University, P.O. Box: 775/14515, Ahar, Iran

3 Department of Chemistry, Tabriz Branch, Islamic Azad University, P.O. Box: 775/14515, Tabriz, Iran

Abstract

In this research, BFO/g-C3N4 nanocomposite was prepared via the hydrothermal method and was analyzed by FTIR, XRD, FESEM, Dot mapping, and EDS. BET and BJH techniques were used to determine the specific surface area and pore size of BFO/g-C3N4 nanocomposite. The efficiency of BFO/g-C3N4 nanocomposite as a photocatalyst was evaluated on photocatalytic degradation of Congo Red dye under visible light irradiation. The effect of key factors, i.e., time, pH of the solution, initial Congo Red concentration, and BFO/g-C3N4 dosage, was studied on photocatalytic degradation of Congo Red dye. Results revealed that degradation of Congo red is increased by increasing time and BFO/g-C3N4 dosage and is decreased by increasing Congo Red concentration and pH. The maximum removal percentage of Congo red reached 74.66% at 40 min, pH=2, initial dye concentration of 10 mg/L, photocatalyst dosage of 0.05 g/100mL under 30 w visible light. It can be deduced that BFO/g-C3N4 nanocomposite act as an effective photocatalyst for removing Congo red from aqueous solutions when exposed to visible light.

Keywords


  1. T. Etemadinia, B. Barikbin, A. Allahresani, Removal of Congo red dye from aqueous solutions using ZnFe2O4/SiO2/Tragacanth gum magnetic nanocomposite as a novel adsorbent. Surf. Interfaces. 14 (2019), 117-126.
  2. M. N. Alshabanat, M. M. AL-Anazy, An experimental study of photocatalytic degradation of congo red using polymer nanocomposite films. J. Chem. 2018 (2018), 1-8.
  3. S. W. Verbruggen, TiO2 photocatalysis for the degradation of pollutants in gas phase: From morphological design to plasmonic enhancement. J. Photochem. Photobiol. C.24 (2015), 64-82.
  4. M. Nademi, M. Keshavarz Moraveji, M. Mansouri, Investigation of UV/TiO2-N photocatalytic degradation of AR 40 using response surface methodology (RSM). J. Bas. Rs. Med. Sci. 4 (2017), 29-40.
  5. M. Shaban, M. R. Abukhadra, A. Hamd, R. R. Amin, A. A. Khalek, Photocatalytic removal of Congo red dye using MCM-48/Ni2O3 composite synthesized based on silica gel extracted from rice husk ash; fabrication and application. J. Environ. Manage. 204 (2017), 189-99.
  6. N. Ali, A. Said, F. Ali, F. Raziq, Z. Ali, M. Bilal, L. Reinert, T. Begum, H. M. Iqbal, Photocatalytic degradation of congo red dye from aqueous environment using cobalt ferrite nanostructures: development, characterization, and photocatalytic performance. Water Air Soil Pollut. 231(2020), 1-6.
  7. S. A. Bhat, F. Zafar, A. H. Mondal, A. Kareem, A. U. Mirza, S. Khan, A. Mohammad, Q. M. Haq, N. Nishat. Photocatalytic degradation of carcinogenic Congo red dye in aqueous solution, antioxidant activity and bactericidal effect of NiO nanoparticles. J. Iran. Chem. Soc. 17 (2020), 215-227.
  8. M. A. Alenizi, R. Kumar, M. Aslam, F. A. Alseroury, M. A. Barakat, Construction of a ternary g C3N4/TiO2@polyaniline nanocomposite for the enhanced photocatalytic activity under solar light. Sci. Rep. 9(2019), 1-8.
  9. S. Darvishi-Farash, M. Afsharpour, J. Heidarian, Novel siligraphene/g-C3N4 composites with enhanced visible light photocatalytic degradations of dyes and drugs. Environ. Sci. Pollut. Res. 28 (2021), 5938-52.
  10. M. Shandilya, R. Rai, J. Singh, Hydrothermal technology for smart materials. Adv. Appl. Ceram. 115(2016), 354-376.
  11. W. Wang, J. C. Yu, D. Xia, P. K. Wong, Y. Li, Graphene and g-C3N4 nanosheets cowrapped elemental α-sulfur as a novel metal-free heterojunction photocatalyst for bacterial inactivation under visible-light. Environ. Sci. Technol. 47 (2013), 8724-8732.
  12. T. Zhou, Y. Xu, H. Xu, H. Wang, Z. S. Huang, H. Li, In situ oxidation synthesis of visible-light-driven plasmonic photocatalyst Ag/AgCl/g-C3N4 and its activity. Ceram. Int. 40(2014), 9293-9301.
  13. M. Muneeswaran, P. Jegatheesan, N. V. Giridharan, Synthesis of nanosized BiFeO3 powders by co-precipitation method. J. Exp. Nanosci. 8(2013), 341-346.
  14. J. Zhao, T. Liu, Y. Xu, Y. He, W. Chen, Synthesis and characterization of Bi2Fe4O9 powders. Mater. Chem. Phys. 128(2011), 388-391.
  15. L. Di, H. Yang, T Xian, X. Chen, Construction of Z-scheme g-C3N4/CNT/Bi2Fe4O9 composites with improved simulated-sunlight photocatalytic activity for the dye degradation. Micromachines 9(2018), 613-619.
  16. X. Wang , W. Mao, J. Zhang, Y. Han, C. Quan, Q. Zhang, T. Yang, J. Yang, X.A. Li, W.  Huang, Facile fabrication of highly efficient g-C3N4/BiFeO3 nanocomposites with enhanced visible light photocatalytic activities. J. Colloid Interface Sci. 448(2015), 17-23.
  17. Q. Hao, T. Chen, R. Wang, J. Feng, D. Chen, W. Yao, A separation-free polyacrylamide/bentonite/graphitic carbon nitride hydrogel with excellent performance in water treatment. J. Clean. Prod. 197(2018), 1222-1230.
  18. I. A. Mkhalid, R. M. Mohamed, A. A. Ismail, M. Alhaddad, Z-scheme g-C3N4 nanosheet photocatalyst decorated with mesoporous CdS for the photoreduction of carbon dioxide. Ceram. Int. 47(2021), 17210-17219.
  19. W. Shan, Y. Hu, Z. Bai, M. Zheng, C. Wei, In situ preparation of g-C3N4/bismuth-based oxide nanocomposites with enhanced photocatalytic activity. Appl. Catal. B 188(2016), 1-12.
  20. Y. Ye, H.Yang, H. Zhang, H. J. Jiang, A promising Ag2CrO4/LaFeO3 heterojunction photocatalyst applied to Photo-Fenton degradation of RhB. Environ. Technol. 40(2018), 1-18.
  21. Q. Xiang, J. Yu, M. Jaroniec, 2012. Graphene-based semiconductor photocatalysts. Chem. Soc. Rev. 41(2012), 782-796.
  22. P. Gao, K. Ng, D. D. Sun, Sulfonated graphene oxide–ZnO–Ag photocatalyst for fast photodegradation and disinfection under visible light. J. Hazard. Mater. 262(2013), 826–835.
  23. N. Ali, A. Said, F. Ali, Photocatalytic Degradation of Congo Red Dye from Aqueous Environment Using Cobalt Ferrite Nanostructures: Development, Characterization, and Photocatalytic Performance. Water Air Soil Pollut. 231, 50 (2020)
  24. M. N. Alshabanat, M. M. AL-Anazy, An experimental study of photocatalytic degradation of congo red using polymer nanocomposite films. J. Chem. 2018 (2018), 1-8.
  25. Z. Ghasemi, H. Younesi, A. A. Zinatizadeh, Preparation, characterization and photocatalytic application of TiO2/Fe-ZSM-5 nanocomposite for the treatment of petroleum. Chemosphere. 159(2016), 552-564
  26. S. Supriya, S. Sathish, 2020. Enhanced photocatalytic decolorization of Congo red dye with surface-modified zinc oxide using copper (II)-amino acid complex. Inorg. Nano-Met. Chem. 50(2020), 100-109.
  27. Z. E Nazarzadeh, L. M. Mansour, M. Masoumi, An environmentally friendly super-adsorbent nanocomposite based on poly (n-vinylpyrrolidone-co-maleic anhydride) and its application for congo red dye removal from aqueous solution. J. Color Sci. Tech. 11(2018), 275-286.
  28. N. Khoshnamvand, E. Bazrafshan, B. Kamarei, Fluoride removal from aqueous solutions by naoh-modified eucalyptus leaves. J. Environ. Health. Sustain Dev. 3(2018), 481-487.
  29. J. A. Abudaia, M. O. Sulyman, K. Y. Elazaby, S. M. Ben-Ali SM, Adsorption of Pb(II) and Cu (II) from aqueous solution ontoactivated carbon prepared from dates stones. Int. J. Environ. Sci. Develop. 2 (2013), 191-195.
  30. M. Shaban, M. R. Abukhadra, S. S.Ibrahim, M. G. Shahien, Photocatalytic degradation and photo-Fenton oxidation of Congo red dye pollutants in water using natural chromite—response surface optimization. Appl. Water Sci.7(2017), 4743-4756.