Payme Noor UniversityDepartment of Chemistry, Payame Noor University, Tehran, Iran
Abstract
This study used cellulosulfonic acid as a new catalyst for synthesizing azo dyes based on naphthol, xanthene, and hydroxycoumarin. Also, cellulosulfonic acid catalyst was recyclable and was used in five steps. The structure of the synthesized compounds was determined by comparing their physical properties with previously reported values using IR and HNMR spectroscopy data. The results showed that these synthetic reactions are elementary and produce azo dyes with good efficiencies. The advantages of the proposed method are the avoidance of environmentally harmful solvents, mild conditions, high speed and short reaction time, simplicity of working up process, high efficiency, and purity of synthesized derivatives.
Zollinger, Color chemistry, synthesis, properties and application of organic dyes and pigments, Wiley-VCH: Weinheim; 2003.
Gregory, High-Technology Applications of Organic Colorants, Plenum Press: New York. 1991.
Viscardi, P. Quagliotto, C. Barolo, G. Caputo, G. Digilio, I. Degani, E. Barni, “Highly bright and photostable cyanine dye-doped silica nanoparticles for optical imaging. Dyes.Pigm. 57 (2003), 87-91.
Noroozi-Pesyan, J. Khalafy, Z. Malekpoor, Couplings in the Presence of p-Toluenesulfonic acid by grinding. Color Colorant. Coat. 2 (2009), 61-65.
Roglans, A. Pla-Quintana, M. Moreno-Manas. Diazonium salts as substrates in palladium-catalyzed cross-coupling reactions. Chem Rev. 106 (2006), 4622–4643.
م. حسین نژاد، سنتز، کاربرد و بررسی خواص دو ماده رنگزای اسیدی جدید برپایه نفتالیمید. نشریه علمی علوم و فناوری رنگ. (1398) 4، 243-233.
ع. اکبری، تهیه ماده رنگزای دیآزو با استفاده از کاتالیزور اسید دوستدار محیطزیست. نشریه علمی علوم و فناوری رنگ. (1398) 1، 8-1.
ل. زارع فکری، م. نیکپسند. سنتز بیس کومارینیل متانهای دارای اتصال آزو با استفاده از مایع یونی [DBU]OAc و در دمای اتاق. نشریه علمی علوم و فناوری رنگ. (1396)2، 137-143.
احمدی، ع. بامنیری، ع. شایاتفر، سنتز رنگینه های دانه ای آزو با استفاده از بستر نانو سیلیکا کرومیک اسید. نشریه علمی علوم و فناوری رنگ. (1390) 5، 34-39.
Mandic Z, Nigovic B, Simunic. The mechanism and kinetics of the electrochemical cleavage of azo bond of 2-hydroxy-5-sulfophenyl-azo-benzoic acids. Electrochim. Acta. 49(2004), 607–615.
Kub, S. Maeda, S. Tokita, M. Kubo. Colorimetric chiral recognition by a molecular sensor. Nature. 382(1996), 522–524.
Steinstrasser, L. Pohl. Chemistry and applications of liquid crystals. Ang. Chem. Int. Ed. 12(1973), 617–630.
He. X. Gu, M. Guo, X. Wang, Dendritic azo compounds as a new type amorphous molecular material with quick photoinduced surface-relief-grating formation ability. Opt. Mater. 31(2008), 18–27.
Pieraccini, S. Masiero, GP. Spada, G. Gottarelli, A new axially-chiral photochemical switch. Chem. Commun. 9(2003), 598–599.
Węglarz-Tomczak, L. Górecki, Azo dyes –biological activity and synthetic strategy. Chemik. 66 (2012) 1298–307.
.آ. حاجی بابا، مروری بر استفاده از نانوذرات سیلیکا در بهبود خواص رنگ و پوشش. مجله علمی مطالعات در دنیای رنگ. (1397)2، 37-44.
م. قایمی زاده، م. خواجوی مهریزی، کاربرد فتوکاتالیستها و عوامل موثر بر آنها در تصفیه پسابهای رنگی. مجله علمی مظالعات در دنیای رنگ. (1398)2، 9-21.
Bokare, RC. Chikate, CV. Rode, KM. Paknikar. Iron-nickel bimetallic nanoparticles for reductive degradation of azo dye Orange G in aqueous solution. Appl. Catal. B. 79(2008), 270-278.
E. Hay, M. C. Aumond, S. Mallet, V. Dumontet, M. Litaudon, D. Rondeau, P. Richomme, Antioxidant xanthones from Garcinia vieillardii. J. Nat. Prod. 67 (2004) 707–709
Zelefack, D. Guilet, N. Fabre, C. Bayet, S. V. Chevalley, S. R. Ngouela, B. N. Lenta, A. Valentin, E. Tsamo, M. G. V. Dijoux-Franca, Cytotoxic and antiplasmodial xanthones from Pentadesma butyracea. J. Nat. Prod. 72 (2009) 954–957.
M. Khurana, D. Magoo, K. Aggarwal, N. Aggarwal, R. Kumar, C. Srivastava, Synthesis of novel 12-aryl-8,9,10,12-tetrahydrobenzo[a]xanthene-11-thiones and evaluation of their biocidal effects. Eur. J. Med. Chem. 58 (2012) 470–477.
L. Niu, Z.L. Li, F. Ji, G.Y. Liu, N. Zhao, X.O. Liu, Y.K. Jing, H.M. Hua, Xanthones from the stem bark of Garcinia bracteata with growth inhibitory effects against HL-60 cells. Phytochemistry. 77 (2012), 280–286.
Laphookhieo, J.K. Syers, R. Kiattansakul, K. Chantrapromma, Cytotoxic and antimalarial prenylated xanthones from Cratoxylum cochinchinense. Chem. Pharm. Bull. (Tokyo), 54 (2006), 745–747.
F. Llama, C. del Campo, M. Capo, M. Anadon, Synthesis and antinociceptive activity of 9-phenyl-oxy or 9-acyl-oxy derivatives of xanthene, thioxanthene and acridine. Eur. J. Med. Chem. 24 (1989) 391–396.
J. Omolo, M. M. Johnson, S. F. Van Vuuren, C.B. De Koning, The synthesis of xanthones, xanthenediones, and spirobenzofurans: their antibacterial and antifungal activity. Bioorg. Med. Chem. Lett. 21 (2011) 7085–7088.
M. Jamison, K. Krabill, A. Hatwalkar, E. Jamison, C.C. Tsai, Potentiation of the antiviral activity of poly r(A–U) by xanthenes dyes. Cell Biol. Int. Rep. 14 (1990) 1075–1084.
N. Hafez, M. I. Hegab, I. S. Ahmed-Farag, A. B. A. El-Gazzar, A facile regioselective synthesis of novel spiro-thioxanthene and spiroxanthene-9’,2-[1,3,4]thiadiazole derivatives as potential analgesic and anti-inflammatory agents. Bioorg. Med. Chem. Lett. 18 (2008) 4538-4543.
Merino, Synthesis of azobenzenes: the coloured pieces of molecular materials. Chem. Soc. Rev. 40 (2011) 3835–3853.
Giri, J. R. Goodell, C. Xing, A. Benoit, H. Kaur, H. Hiasa, D.M. Ferguson, Synthesis and cancer cell cytotoxicity of substituted xanthenes. Bioorg. Med. Chem. 18 (2010) 1456–1463.
Chen, T. Pradhan, F. Wang, J. S. Kim, J. Yoon, Flourescent chemosensors based on spiroring-opening of xanthenes and related derivatives. Chem. Rev. 112 (2011) 1910- 1956.
Zhen, H. Han, M. Anguiano, C. Lemere, C. G. Cho, P.T. Lansbury, Synthesis and amyloid binding properties of rhenium complexes: preliminary progress toward a reagent for SPECT imaging of Alzheimer's disease brain. J. Med. Chem. 42 (1999) 2805–2815.
Mirjalili, A. Bamoniri, A. Akbari, BF3.SiO2: an efficient catalyst for the synthesis of azo dyes at room temperature. Curr. Chem. Lett. 1(2012), 109–114.
Li, J. Li, B. Liu, Y. Zhou, X. Li, X. Xue, Z. Hou, X. Luo, Eur. J. Synthesis, Crystal Structures, and Anti-Drug-Resistant Staphylococcus Aureus Activities of Novel 4-hydroxycoumarin Derivatives. Pharmacol. 721 (2013) 151-157.
O. Reilly, J. Ohms, C. Motley, J. Synthesis of furo[3,2-c] benzopyran-4-one through acid catalysed 1,2- elimination”. Biol. Chem. 244 (1969) 1303-1305.
Zhao, N. Neamati, H. Hong, A. Mazumder, S. Wang, S. Sunder, G.W.A. Milne, Y. Pommier, T.R. Burke Jr., Coumarin-based inhibitors of HIV integrase. J. Med. Chem. 40 (1997) 242-249.
Marcal de Queiroz. synthesis of benzopyranobenzopyrans and monocoumarin derivatives. Italy PCT Int Appl WO 98 25,608 (Cl. A61K31/37), 18 Jun 1998.
Sen, P. Bagchi, Studies on the Ultraviolet Absorption Spectra of Coumarins and Chromones. J. Org. Chem. 24 (1959) 316-319.
Bamoniri, B. B. F. Mirjalili, N. Moshtael-Arani, Environmentally green approach to synthesize azo dyes based on 1-naphthol using nano BF3·SiO2 under solvent-free conditions, Green. Chem. Lett. Rev, 7 (2014) 393–403.
Bamoniri, N. Moshtael-Arani, Nano-Fe3O4 encapsulated-silica supported boron trifluoride as a novel heterogeneous solid acid for solvent-free synthesis of arylazo-1-naphthol derivatives, RSC Adv, 5 (2015) 16911-16920.
Bamoniri, A. R. Pourali, S. M. R. Nazifi, Facile synthesis of 1-naphthol azo dyes with nano SiO2/HClO4 under solvent-free conditions. Bull. Chem. Soc. Ethiop. 27 (2013) 439-445.
Benkhaya, S. M'rabet, Classifications, properties, recent synthesis and applications of azo dyes, Heliyon, 6 (2020) e03271.
Kwasi Adu, C. D. K. Amengor, N. J. Mohammed, Synthesis and In Vitro Antimicrobial and Anthelminthic Evaluation of Naphtholic and Phenolic Azo Dyes. Tropical. Medicin. 2 (2020) 1-8.
A. Davasaz Rabbani, B. Khalili, H. Saeidian, Novel edaravone-based azo dyes: efficient synthesis, characterization, antibacterial activity, DFT calculations and comprehensive investigation of the solvent effect on the absorption spectra, RSC Adv.10 (2020) 35729-35739.
Gur, Synthesis, Characterization, and Antimicrobial Properties of New 1,3,4‐Thiadiazoles Derived from Azo Dyes, J. Het. Chem. 56 (2019) 980-987.
Noroozi Pesyana, V. Gholsanamlooa, M. Moradi Parb, Synthesis, characterization and spectroscopic properties of new azo dyes derived from aniline derivatives based on acetylacetone and azo-metal (II) complexes and singular value decomposition (SVD) investigation, Iran. Chem. Commun. 7 (2019) 1-9.
Bamoniri, F. Mirjalili, S. Fouladgar, N. Moshtael-Arani, Nano Silica Phosphoric Acid: A Highly Efficient and Heterogeneous Catalyst for Synthesis of Azo Dyes Based on 1- and 2-Naphthol at Room Temperature. Natl. Acad. Sci. Lett. 39 (2015) 1-4.
Bamoniri, N. Moshtael-Arani, Nano-Fe3O4 encapsulated-silica supported boron trifluoride as a novel heterogeneous solid acid for solvent-free synthesis of arylazo-1-naphthol derivatives. RSC Adv, 5(2015),16911–16920.
Bamonori, B. B. Mirjalili, Nano Silica Phosphoric Acid: A Highly Efficient and Heterogeneous Catalyst for Synthesis of Azo Dyes Based on 1- and 2-Naphthol at Room Temperature. National. Acad. Sci. Lett. 39(2016) 25-28.
Rahimizadeh, H. Eshghi, A. Shiri, Z. Ghadamyari, M.M. Matin, F. Oroojalian, P. Pordeli, Fe(HSO4)3 as an Efficient Catalyst for Diazotization and Diazo Coupling Reactions. J. Korean. Chem. Soc. 56(2012), 716-719.
Ghaffari, Sh. Abd Hamid, H. Hazarkhanic. TiO2nanotubes and sonication: Synthesis of azo-linked xanthenes. Inorg. Nano. Metal. Chem. 47 (2017) 1-26.
Zarei, A. R. Hajipour, L. Khazdooz, B.F. Mirjalili, A. Najafi. Dye. Pigment., 81(2009) 40-244.
Bamoniri, B. F. Mirjalili, A. Ghorbani-Choghamarani, A. Akbari, M. E. Yazdanshenas, A. Shayanfar. Iran. J. Org. Chem., 3 (2011) 603-606.
Ginni, R. Karnawat, I. K. Sharma, P. S. Verma. Int. J. A. Bio. Pharm. Technol., 2 (2011) 332-338.
Bamoniri, A. R. Pourali, S. M. R. Nazifi. Iran. J. Catal. 4 (2012) 185-189.
Bamoniri, B.B.F. Mirjalili, A. Ghorbani-Choghamarani, M.E. Yazdanshenas, A. Shayanfar, A. Akbari, Nanosilica chromic acid/wet SiO2and NaNO2as an efficient reagent system for synthesis of azo dyes based on 1-naphthol atroom temperature and solvent-free conditions. Iran. J. Catal. 1 (2011) 51-54.
Bamoniri, B. B. F. Mirjalili, S. Fouladgari, N. Moshtael-Arani, Nano Silica Phosphoric Acid: A Highly Efficient and Heterogeneous Catalyst for Synthesis of Azo Dyes Based on 1- and 2-Naphthol at Room Temperature. Natl. Acad. Sci. Lett. 39 (2016) 25-28.
Ghaffari Khaligh,Sh. B. Abd Hamid,T. Mihankhah, TiO2nanotubes catalyzed the synthesis of azo-linked xanthenes under ultrasonic conditions. Inorg. Nano. Metal. Chem. 47 (2017) 1057-1063.
T. Khatab, A. El-Mekabaty, Z. M.Gamala, E. M. Kandil, An Efficient Catalytic Synthesis of 1,8-Dioxo-octahydroxanthene Derivatives with Anti-oxidant Scanning. Egypt. J. Chem. 61 (2018) 661-66.
S. N. Deshmukh, M. S. Shingare, Phosphotungstic acid an efficient catalyst for the synthesis of Bis(4-Hydroxycoumarine)derivatives under ultrasound irradiation. Chem. Biol. Interface. 5 (2015) 219-225.
Baghernejad, B. (2021). Synthesis of Azo Dyes Based on Naphthols, Xanthines, and Hydroxy Coumarins in the Presence of Cellulose Sulfonic Acid. Journal of Color Science and Technology, 15(3), 225-241.
MLA
B. Baghernejad. "Synthesis of Azo Dyes Based on Naphthols, Xanthines, and Hydroxy Coumarins in the Presence of Cellulose Sulfonic Acid", Journal of Color Science and Technology, 15, 3, 2021, 225-241.
HARVARD
Baghernejad, B. (2021). 'Synthesis of Azo Dyes Based on Naphthols, Xanthines, and Hydroxy Coumarins in the Presence of Cellulose Sulfonic Acid', Journal of Color Science and Technology, 15(3), pp. 225-241.
VANCOUVER
Baghernejad, B. Synthesis of Azo Dyes Based on Naphthols, Xanthines, and Hydroxy Coumarins in the Presence of Cellulose Sulfonic Acid. Journal of Color Science and Technology, 2021; 15(3): 225-241.