DFT Study on Corrosion Inhibitory Effects of Three Substituted Triazole Derivatives on Iron Surface

Document Type : Original Article

Author

Department of Chemistry, Ghods Branch, Islamic Azad University, Tehran, Iran

Abstract

Three derivatives of triazole, namely 5-amino 1,2,4-triazole, 5-ATA, and 5-amino-3-mercapto 1,2,4-triazole, 5 –AMT, and 5-amino-3-methyl thio 1,2,4-triazole,5-AmeTT, which are recently used as corrosion inhibitors for steel, were considered as corrosion inhibitors for the iron surface using density functional theory (DFT), at the B3LYP / 6-31G (d) level. Fukui and Four functions, EHOMO, ELUMO, Eg, and ΔN, are defined as the highest occupied molecular orbital energy, the lowest unoccupied molecular orbital energy, the energy gap between HOMO and LUMO, and a fraction of electron transfer, were calculated respectively. They were evaluated to predict the active reaction sites and the electrophilic or nucleophilic attack. Also, The mechanism of the corrosion reaction was investigated. The computational results were very close to the experimental results.

Keywords


  1. Solmaz, G. Kardas, B. Yazıcı & M. Erbil, Adsorption and Corrosion Inhibition Effect of 1,1’-Thiocarbonyldiimidazole on Mild Steel in H2SO4 Solution and Synergistic Effect of Iodide Acta Phys. Chim. Sin. 07 (2008), 1185 -1191
  2. Kardas, The Inhibition Effect of 2-Thiobarbituric Acid on the Corrosion Performance of Mild Steel in HCl Solutions. Mater, Sci. 41)2005(, 337-343
  3. Ostovari, M. Hoseinieh, M. Peikari, S. R. Shadizadeh & S. J. Hashemi, Corrosion inhibition of mild steel in 1 M HCl solution by henna extract: A comparative study of the inhibition by henna and its constituents (Lawsone, Gallic acid, α-d-Glucose and Tannic acid) Corros. Sci. 51(2009(, 1935-1949
  4. G. Fontana, Corrosion Engineering, McGrawHill, New York.1989.
  5. م. داوودی، ا. قاسمی، ب. رمضان‌زاده، م. مهدویان احدی، مروری بر ترکیبات آلی-معدنی حاوی بازدارنده‌های خورد: بررسی روش‌های ساخت و سازوکار حفاظت. نشریه علمی مطالعات در دنیای رنگ. (1397)8، 38-25.
  6. س. عبداللهی باغبانی، م. خراسانی، مطالعه رفتار بازدارندگی بنزوتزی آزول برای کنترل خوردگی در محیط های خورنده، نشریه علمی ترویجی مطالعات در دنیای رنگ ،جلد 8، شماره 2، (1397),55-70.
  7. El Adnani, M. Mcharfi, M. Sfaira, M. Benzakour, A.T. Benjelloun, M. Ebn Touhami, DFT theoretical study of 7-R-3methylquinoxalin-2(1H)-thiones (R=H; CH3; Cl) as corrosion inhibitors in hydrochloric acid. Corros. Sci. 68 (2013) 223–230
  8. Haque, Ch. Verma, V. Srivastava, M. A. Quraishi, Eno E. Ebenso, Experimental and quantum chemical studies of functionalized tetrahydropyridines as corrosion inhibitors for mild steel in 1 M hydrochloric acid. Results Phys. 9(2018) 1481–1493.
  9. A. Teixeira, Marco A. G. Valente Jr., Assis V. Benedetti, Gustavo T. Feliciano, Sebastião C. da Silva and Cecílio S. Fugivar, Experimental and Theoretical Studies of Volatile Corrosion Inhibitors Adsorption on Zinc Electrode. J. Braz. Chem. Soc. 26 (2015) 434-450.
  10. John, A. Joseph, S. T. Ajith James Jose, Egyptian Journal of Petroleum, Corrosion inhibition properties of 1,2,4-Hetrocyclic Systems: Electrochemical, theoretical and Monte Carlo simulation studies. Egypt. J. Pet. 26 (2017), 721–732.
  11. Mahdavian, M. M. Attar, Electrochemical Assessment of Imidazole Derivatives as Corrosion Inhibitors for Mild Steel in 3.5% NaCl Solution. Prog. Color Colorants Coat. 8(2015), 177-196.
  12. Ramezanzadeh, M. Mehdipour, S. Y. Arman, Application of Electrochemical Noise to Investigate Corrosion Inhibition Properties of Some Azole Compounds on Aluminum in 0.25 M HCl. Prog. Color Colorants Coat. 8(2015), 69-86.
  13. Mohammadi, A. Taheri, A. Mohammadi, M.Z. Nezhadmiri, Evaluation the Inhibition Effect of Diethylene Glycol on the Corrosion of Steel A105 in Seawater and HCl. J. Appl. Chem. 39 (2016) 149.
  14. L. Zheludkevich, K. A. Yasakau, S. K. Poznyak, M. G. S. Ferreira, Triazole and thiazole derivatives as corrosion inhibitors for AA2024 aluminium alloy. Corros. Sci. 47 (2005) 3368.
  15. Atabaki, S. Jahangiri, Presentation of a new organic inhibitor as temporary protection of steel corrosion. J. Appl. Chem. 11(2017) 67.
  16. G. Hosseini, M. Ehteshamzadeh, T. Shahrabi, Protection of mild steel corrosion with Schiff bases in 0.5 M H2SO4 solution. Electrochim. Acta. 52 (2007) 3680.
  17. S. Afak, B, Duran, A. Yurt, G. Turkoglu, Schiff bases as corrosion inhibitor for aluminium in HCl solution. Corros. Sci. 54 (2012), 251-259.
  18. Zhang, L. Gao, G. Zhou, Inhibition of copper corrosion in aerated hydrochloric acid solution by heterocyclic compounds containing a mercapto group. Corros. Sci. 46(2004), 3031-3040.
  19. F. Lebrini, M. Langrenee, M. Thermodynamic, characterization of metal dissolution and inhibitor adsorption processes in mild steel/2,5-bis(n-thienyl)-1,3,4-thiadiazoles/hydrochloric acid system. Corros. Sci. 47(2005), 2915-2931.
  20. , Benchat N, Hammouti B, Aouniti A, Thermodynamic characterization of steel corrosion and inhibitor adsorption of pyridazine compounds in 0.5 M H2SO4. Mater. Lett. 60(2006), 1901-1905.
  21. Allam, Thermodynamic and quantum chemistry characteri-zation of the adsorption of triazole derivatives during Muntz corrosion in acidic and neutral solutions. Appl. Surf. Sci. 253(2007), 4570-4577.
  22. Arslan, F. Kandemirli, E. Ebenso, I. Love, H. Alemu, Quantum chemical studies on the corrosion inhibition of some sulphonamides on mild steel in acidic medium. Corros. Sci. 51(2009), 35-47.
  23. C .M. Goulart, A. Esteves-Souza, A. Martinez-Huitle, C. J. F. Rodrigues, M. Maciel, Echevarria, Experimental and theoretical evaluation of semicarbazone s and thiosemicarbazones as organic corrosion inhibitors. J. Corros. Sci. 67(2013), 281–291.
  24. Efil, Y. Bekdemir, Theoretical Study on Corrosion Inhibitory Action of Some Aromatic Imines with Sulphanilic Acid: A DFT Study. Can. Chem. Trans. 3(2015), 85-93.
  25. Singh, K. R. Ansari, J. Haque, P. Dohare, H. Lgaz, R. Salghi, M. A. Quraishi, Effect of electron donating functional groups on corrosion inhibition of mild steel in hydrochloric acid: Experimental and quantum chemical study. J. Taiwan Inst. Chem. Eng. 82 (2018), 233–251.
  26. Soltaninejad, M. Shahidi, Investigating the effect of penicillin G as environment-friendly corrosion inhibitor for mild steel in H3PO4 solution. Prog. Color Colorants Coat. 11(2018), 137-147.
  27. R. Gholamhosseinzadeh, R. Farrahi-Moghaddam, Electrochemical Investigation of The Effect of Penicillin G Benzathine as a Green Corrosion Inhibitor For Mild Steel. Prog. Color Colorants Coat. 12 (2019), 15-23.
  28. Abdollahi, M. M. Foroughi, M. Shahidi Zandi, M. Kazemipour, Electrochemical Investigation of Meloxicam Drug as a Corrosion Inhibitor for Mild Steel in Hydrochloric and Sulfuric Acid Solutions. Prog. Color Colorants Coat. 13 (2020), 155-165.
  29. Bentiss, M. Lagrenee, M. Traisnel, J. C. Hornez, The corrosion inhibition of mild steel in acidic media by a new

    triazole derivative. Corros. Sci. 41(1999), 789- 803.

  30. Wang, M. J. Zhu, F. C. Yang, C. W. Gao, Study of a triazole derivative as corrosion inhibitor for mild steel in phosphoric acid solution. Int. J. Corros. (2012), 1–6.

  31. Zarrouk, B. Hammouti, S. S. Al-Deyab et al., Corrosion

    inhibition performance of 3,5-Diamino-1,2,4-triazole for Protection of Copper in Nitric Acid Solution, International J. Electrochem. 7(2012), 5997–6011.

  32. M. Al-Kharaf, F. H. Al-Hajjar, A. Katrib, 3-phenyl-1, 2, 4-triazol-5-one as a corrosion inhibitor for copper. Corros. Sci. 26(1986), 257–264.

  33. G. Fox, P. A. Bradley, 1:2:4-triazole as a corrosion

    inhibitor for copper. Corros. Sci. 20(1980), 643–649.

  34. N. Soltani, S. Behrouz, H. Najafi, NTosyltheophylline (TsTh): a highly efficient reagent for the one-pot synthesis of Nalkyltheophyllines from alcohols. Synth. 6(2014), 1380–1388.

  35. Touir, N. Dkhireche, M. Ebn Touhami, M. Lakhrissi, B. Lakhrissi, M. Sfaira, Corrosion and Scale Processes and Their Inhibition in Simulated Cooling Water Systems by Monosaccharides Derivatives: Part I: EIS Study. Desalin. 249(2009), 922–928.
  36. Zhang, Y. Tang, Z. Cao, W. Jing, Z. Wu, Y. Chen, Performance and theoretical study on corrosion inhibition of 2-(4-pyridyl)-benzimidazole for mild steel in hydrochloric acid. Corros. Sci. 61(2012), 1–9.
  37. D. Becke, Density‐functional thermochemistry. III. The role of exact exchange, Chemical Physics, 98 (1993) 5648–5652.
  38. D. Becke, Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A. 38(1988), 3098–3100.
  39. Lee, W. Yang, R. G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B. 37(1988), 785–789.
  40. J. Frisch, G. W. Trucks, H .B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar,J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, J. A. Pople, Gaussian 03, Revision B.01, Gaussian, Inc., Pittsburgh, PA, 2003.
  41. Hamdy, E. Hassan, M. Abdelghani, A. Amin, Inhibition of mild steel corrosion in hydrochloric acid solution by triazole derivatives: Part I. Polarization and EIS studies. Electrochim. Acta. 52 (2007), 6359–6366.
  42. C. Zhan, J. A. Nichols, D. A. Dixon, Ionization Potential, Electron Affinity, Electronegativity, Hardness, and Electron Excitation Energy: Molecular Properties from Density Functional Theory Orbital Energies. J. Phys. Chem. A. 107(2003), 4184–4195.
  43. El Mehdi, B. Mernari, B. Traisnel, F. Bentiss, M. Lagrenée, Synthesis and comparative study of the inhibitive effect of some new triazole derivatives towards corrosion of mild steel in hydrochloric acid solution. Mater. Chem. Phys. 77(2002), 489–496.
  44. G. Pearson, Absolute electronegativity and hardness: application to inorganic chemistry. Inorg. Chem. 27(1988), 734–740.
  45. El Adnani, M. Mcharfi, M. Sfaira, M. Benzakour, A.T. Benjelloun, M. Ebn Touhami, B. Hammouti, M. Taleb, DFT Study of 7-R-3methylquinoxalin-2(1H)-ones (R=H;CH3;Cl) as Corrosion Inhibitors in Hydrochloric Acid. Int. J. Electrochem. Sci. 7(2012), 6738–6751.
  46. El Adnani, M. Mcharfi, M. Sfaira, A. T. Benjelloun, M. Benzakour, M. Ebn Touhami, B. Hammouti, M. Taleb, Investigation of Newly Pyridazine Derivatives as Corrosion Inhibitors in Molar hydrochloric Acid. Part III: Computational Calculations. Int. J. Electrochem. Sci. 7(2012), 3982–3996.
  47. Contreras, P. Fuentealba, M. Galvan, P. A. Perez., A. direct evaluation of regional Fukui functions in molecules. Chem Phys Lett. 304 (1999), 405–13.
  48. F. Khaled, Adsorption and inhibitive properties of a new synthesized guanidine derivative on corrosion of copper in 0.5 M H2SO4. Appl. Surf. Sci. 255(2008), 1811–1818.
  49. Zarrok, A. Zarrouk, R. Salghi, H. Oudda, B. Hammouti, M. Assouag, M. Taleb, M. Ebn Touhami, M. Bouachrine, S. Boukhris, Gravimetric and quantum chemical studies of 1-[4-acetyl-2-(4-chlorophenyl)quinoxalin-1(4H)-yl] acetone as corrosion inhibitor for carbon steel in hydrochloric acid solution. J. Chem. Pharmac. Res. 4(2012), 5056-5066
  1. ن. اسمعیلی، ج. نشاطی، م. شایگانی اکمل، محاسبات کوانتومی در روش‌های الکتروشیمیایی جهت بررسی بازدارندگی خوردگی آریل تری آزینو – بنزیمیدازول – 2 – تیون‌ها در محیط اسیدی، پژوهش نفت، (1397)28، 25-15.
  2. Martinez, Inhibitory mechanism of mimosa tannin using molecular modeling and substitutional adsorption isotherms. Mater. Chem. Phys. 77 (2002), 97–102.
  3. J. S Dewar, W. Thiel, Ground states of molecules. The MNDO method. Approximations and Parameters. J. Am. Chem. Soc. 99 (1977), 4899–4907.
  4. Lukovits, E.Kalman, F.Zucchi, Corrosion Inhibitors–Correlation between Electronic Structure and Efficiency. Corros. 57 (2001), 3–8.
  5. W. Ayers, W. Yang, L. J. Bartolotti, In: Chattaraj P.K. (Ed.),Chemical Reactivity Theory: A Density Functional View, Chapter 8, CRC Press Taylor and Francis Group, Boca Raton, FL, 2009.
  6. Nazari, F. R. Zali, Density functional study of the relative reactivity of the carbonyl group in substituted cyclohexanone, J. Mol. Struct. (Theochem), 817(2007), 11-18.
  7. M. Lopez, A. Ensuncho, J. Robles, Theoretical Study of Chemistry Reactivity and Biological of Cisplatin and some Derivatives with Anticancer Activity, Inf. Tecnol. 24 (2013), 3-14.
  8. ع. دهقانی، ق. بهلکه، ب. رمضان‌زاده، بررسی عملکرد بازدارندگی خوردگی عصاره آبی دارچین روی فولاد ساده کربنی در محیظ اسید هیدرو کلریک یک مولار. نشریه علمی علوم و فناوری رنگ. (1398)13، 154-141.
  9. Zheng, S. Zhang, M. Gong, W. Li, Experimental and theoretical study on the corrosion inhibition of mild steel by 1-octyl-3-methylimidazolium L-prolinate in sulfuric acid solution. Ind. Eng. Chem. Res. 53(2014), 16349-16358.
  10. Tao, S. Zhang, W. Li, B. Hou, Adsorption and corrosion inhibition behavior of mild steel by one derivative of benzoic triazole in acidic solution. Ind. Eng. Chem. Res. 49(2010), 2593-2599.
  11. A. Ahmed. S. Farag, Amr, M. A. Ismail, Migahed, Environmental-friendly shrimp waste protein corrosion inhibitor for carbon steel in 1 M HCl solution. Egypt. J. Pet. 27( 2018), 1187-1194.