Synthesis and Investigation of Corrosion Properties of Polyortho-Aminophenol / Fe3O4 Nanocomposites Chemically Prepared on Stainless Steel 304

Document Type : Original Article

Authors

1 Department of chemistry, Payame Noor University, Tehran, Iran

2 Materials and Nuclear Fuel Research School, Nuclear Science and Technology Research Institute, Tehran, Iran

Abstract

In this study, a 10% w/w PolyorthoAminophenol/Ferric oxide nanoparticle (PoAP / Fe3O4) nanocomposite film was chemically prepared, then a polymer mixture with other polymers such as polyvinyl alcohol (PVA), polyvinyl pyrolidone (PVP), polyvinylacetate (PVAc), pure polyacrylate (PA) and polyacrylate/styrene (PAS)  was prepared in N-methylpyrrolidone solvent. The results showed that the corrosion resistance behavior of the nanocomposite depends on the added polymer matrix, so that the best protection is obtained when pure polyacrylate is used PoAP / Fe3O4 nanocomposite is characterized by the use of scanning electron microscopy (SEM), infrared spectroscopy (FT-IR) and X-ray diffraction (XRD) to determine the structure and morphology and magnetometry (VSM) to determine magnetic properties. Corrosion protection of coatings on stainless steel 304 metal in 3.5% sodium chloride solution was evaluated by electrochemical methods at ambient temperature. Corrosion test was performed with potentiostat-galvanostat apparatus with three electrodes. 

Keywords

Main Subjects


  1. S. Brossia, Handbook of environmental degradation of materials, William Andrew Publishing, NewYork. 2018, 27-50.
  2. B. W. Darvell, Materials science for dentistry, Woodhead Publishing, NewYork. 2018, 382-398.
  3. R. Singh, Pipeline integrity handbook, Gulf Professional Publishing. 2017, 241-270.
  4. K. C. Chang, J. M. Yeh, Intelligent coatings for corrosion control, Butterworth-Heinemann: Boston. 2015, 557-583.
  5. A. Adhikari, P. Claesson, J. Pan, C. Leygraf, A. D. EvaBlomberg, Electrochemical behavior and anticorrosion properties of modified polyaniline dispersed in polyvinylacetate coating on carbon steel. Electrochim. Acta. 53(2008), 4239-4247.
  6. A.de Leon, R.C. Advincula, Intelligent coatings for corrosion control, Butterworth-Heinemann: Boston. 2015, 409-430.
  7. A. V. Lezov, G. E. Polushina, A. A. Lezov, O. A. Pyshkina, A. N. Korovin, V. G. Sergeev, Molecular properties of sulfonated polyaniline. Polym. Sci. Ser. A. 52(2010), 679-683.
  8. B. Massoumi, R. Mohammadi, Synthesis of nanostructured polyaniline via chemical oxidative polymerization: Investigation of morphology and conductivity of the prepared polymers. Polym. Sci. Ser. B. 55(2013) 593-600.
  9. B. Massoumi, F. Ghashangpour Peivasti, M. Saraei, A. A. EntezamiElectrochemical and chemical synthesis of nanostructure copoly(aniline-o-anisidine-o-toluidine) and study of its electrochemical behavior in organic sulfonic acid media. Polym. Sci. Ser. A. 53(2011) 586-594.
  10. N. Ezzati, E. Asadi, R. M. Leblanc, M. H. Ezzati, S. K.Sharma Polyaniline blends, composites, and nanocomposites, Elsevier. 2018, 279-303.
  11. F. X Perrin, C. Oueiny, Polyaniline blends, composites, and nanocomposites, Elsevier. 2018, 117-147.
  12. L. Zhihua, Zh. Xucheng, S. Jiyong, Z. Xiaobo, Preparation of conducting polyaniline/protoporphyrin composites and their application for sensing VOCs. Food Chem. 276(2019) 291-297.
  13. Ansari, M. O., et al., Functional Polymers, Springer International Publishing: Cham. 2018, 1-30.
  14. M. E.Carbone, R.Ciriello, XPS, AFM, and electrochemical investigation on the inner composition of insulating poly(o-aminophenol), PoAP, deposited on platinum by CV, as a function of the number of cycles. Surf. Interface Anal. 48 (2016) 99-104.
  15. E. Ekinci, A. A. Karagözler, A. E. Karagözler, The preparation and sensor application of poly(p-aminophenol). Polym. Sci. Ser. A. 8(1996), 571-574.
  16. S. M.Sayyah, M. El-Rabiey, S. S. Abd El‐Rehim, E. Azooz, Electropolymerization kinetics of o-aminophenol and characterization of the obtained polymer films. Appl. Polym. 99(2006), 3093-3109.
  17. A. Shah, R. Holze, Poly(o-aminophenol) with two redox processes: A spectroelectrochemical study. J. Electroanal. Chem. 597(2006), 95-102.
  18. R. Tucceri, P. M. Arnal, A. N. Scian, Poly(o-aminophenol) Film Electrodes: Synthesis and Characterization and Formation Mechanisms. Chem. Inform Abstract. 44(2013), 30.
  19. M. Chigondo, H. Kamdem, P. Madhumita, B. Kriveshini, A. Maity, Hydrous CeO2-Fe3O4 decorated polyaniline fibers nanocomposite for effective defluoridation of drinking water. J. Colloid Interface Sci. 532(2018), 500-516.
  20. M. Izadi, T. Shahrabi, B. Ramezanzadeh, Synthesis and characterization of an advanced layer-by-layer assembled Fe3O4/polyaniline nanoreservoir filled with Nettle extract as a green corrosion protective system. J. Ind. Eng. Chem. 57(2018) 263-274.
  21. W. S. Barde, S. V. Pakade, S. P. Yawale, Ionic conductivity in polypyrrole–poly (vinyl acetate) films synthesized by chemical oxidative polymerization method. J. Non-Cryst. Solids, 353(2007), 1460-1465.
  22. Guo, R. Jiao Wang, Engineering the poly(vinyl alcohol)-polyaniline colloids for high-performance waterborne alkyd anticorrosion coating. Appl. Surf. Sci. 481(2019), 960-971.
  23. J. M.Gustavsson, P. C. Innis, Processable polyaniline-HCSA/poly(vinyl acetate-co-butyl acrylate) corrosion protection coatings for aluminium alloy 2024-T3: A SVET and Raman study. Electrochim. Acta. 54(2009), 1483-1490.
  24. S. Devikala, P. Kamaraj, M. Arthanareeswari, Corrosion resistance behavior of PVA/TiO2 composite in 3.5% NaCl, Materials Today: Proceedings, 5(2018), 8672-8677.
  25. M. A. Abd El-Ghaffar, N. M.Wahab, High performance anti-corrosive powder coatings based on phosphate pigments containing poly(o-aminophenol). Prog. Org. Coat. 78(2015), 42-48.
  26. E. Hür, G. Bereket, Electropolymerization of m-aminophenol on mild steel and its corrosion protection effect. Prog. Org. Coat. 60(2007), 153-160.
  27. A. A. Olajire, , Corrosion inhibition of offshore oil and gas production facilities using organic compound inhibitors - A review. J. Mol. Liq. 248(2017), 775-.808.
  28. J. M. Ortega, Conducting potential range for poly(o-aminophenol). Thin Solid Films. 371(2000), 28-35.
  29. J. Pishahang, H. B. Amiri, H. Heli, Synthesis of carbon nanoparticles-poly(ortho-aminophenol) nanocomposite and its application for electroanalysis of iodate. Sens. Actuators. B. 256 (2018)878-887.
  30. D. Profeti, L. P. R. Profeti, P. Olivi, Effects of electrochemical synthesis conditions on poly(o-methoxyaniline) thin films formation. Mater. Chem. Phys. 213(2018), 96-101.
  31. J. Mohammadian, Synthesis and Investigation on Viscoelastic Properties of Urethane Acrylate Polyaniline. Prog. Color Colorants Coat. 11(2018), 241-252.
  32. Z. Hesari, B. Shirkavand Hadavand, Fabrication and Study of Structural, Optical and electrical properties of uv curable conductive polyurethane acrylate films containing polyaniline-Co3O4 nanocomposites.  Prog. Color Colorants Coat. 9(2016), 41-52.
  33. ع. دهقانی، ب. رمضان زاده، بررسی عملکرد بازدارندگی خوردگی عصاره آبی دارچین روی فولاد ساده کربنی در محیط اسید کلریدریک. نشریه علمی علوم و فناوری رنگ. (1398)13، 152-141.
  34. ن. نطقی طاهری، ب. رمضان زاده، مروری بر عملکرد ضد خوردگی پلی آنیلین در پوشش اپوکسی.  نشریه علمی مطالعات در دنیای رنگ. (1397)8، 14-1.
  35. م. احسان جو، س. محمدی، مروری بر نقش نانو مواد در بهبود خواص مقاومت به خوردگی پوشش های غنی از روی. نشریه علمی مطالعات در دینای رنگ. (1398)9، 44-27.