Optimization of Dye Extraction from Madder by Response Surface Methodology and Study of Dyeing Properties

Document Type : Original Article

Authors

1 Department of Organic Colorants, Institute for Color Science and Technology, Tehran, IranIran

2 Department of Organic Colorants, Institute for Color Science and Technology, Tehran, Iran

3 Center of Excellence for Color science and Technology, Institute for Color Science and Technology, Tehran, Iran

4 Department ofTextile engineering, Faculty of Chamran, Rasht Branch, Technical and Vocational University, Rasht, Iran

5 Department of carpet, Tehran University of art, Tehran, Iran

Abstract

In this study, the response surface method (RSM) of the central composite design model was used to optimize the extraction of dyes in madder plant root by a shaker-incubator. The optimum conditions for the assessed parameters including pH, time and temperature was 6.57, 63.88 min and 47.46 °C, respectively. Each experiment’s response was determined by assessing light absorption intensity at 413 nm. Experiments to obtain optimum condition out of the chosen model show that there is a very insignificant difference between the model’s absorption and our experimental method. To prepare powder of the extracted dye material, we extracted the dye through four steps. The resulted solution was condensed by a rotary machine in vacuity. Then it was added to a formulation that encompasses filling materials and superficial active materials agents. The results imply that the prepared powder can dye wool thread which in turn showed stable properties involved wash fastness of 4-5, light fastness of 4-5 and rubbing fastness of 3-5. 

Keywords

Main Subjects


  1. م. شاهپروری، س. صفاپور، ک. ا. قرنجیگ، مطالعه رفتار سینتیکی و قابلیت رنگرزی نخ پشمی با مواد رنگزای طبیعی روناس و قرمزدانه. نشریه علمی علوم و فناوری رنگ. 10(1395)، 195-206.
  2. ا. ا. حاجی، رنگرزی پارچه پشمی با ماده رنگزای طبیعی اسپنددانه: بررسی عوامل موثر بر قدرت رنگی به کمک روش رویه پاسخ. نشریه علمی علوم و فناوری رنگ. 13(1398)، 131-140.
  3. 3. T. Bechtold, R. Mussak, Natural colourants–quinoid, naphthoquinoid and anthraquinoid dyes, In Handbook of natural colorants. (2009), 151–182.
  4. D. Gupta, S. Kumari, M. Gulrajani, Dyeing studies with hydroxyanthraquinones extracted from Indian madder, Part 2: Dyeing of nylon and polyester with nordamncanthal. Color. Technol. 117 (2001), 333–336.
  5. J. Schwarzbauer, D. Robert, Green materials for energy, products and depollution. Springer Netherlands. (2013).
  6. M. Shahid, F. Mohammad, Perspectives for natural product based agents derived from industrial plants in textile applications–a review, J. Cleaner Prod. 57 (2013), 2-18.
  7. S. Saxena, A. S. M, Raja, Natural dyes: sources, chemistry, application and sustainability issues, Roadmap Sustainable Text. Clothing. (2014), 37-80.
  8. H. Uslu, H. S. Bamufleh, Effect of solvent and pH on the extraction of carbolic acid from aqueous solution by TOMAC, J. Chem. Eng. 61(2016), 1676-1680.
  9. X. Xinsheng, W. Lua, J. Shunhua, Z. Qicheng, Z. Xinlong, H. Xiaofeng, Extraction of coloring matter from Sargentodoxa cuneata by ultrasonic technique and its application on wool fabric, Indian J. Fibre Text. Res. (2008).
  10. M. Yolmeh, M. Bagher, H. Najafi, Reza. Farhoosh, F. Hosseini, Optimization of ultrasound-assisted extraction of natural pigment from annatto seeds by response surface methodology (RSM). Food Chem. 155 (2014), 319-324.
  11. ع. زرگری، گیاهان دارویی، انتشارات دانشگاه تهران، جلد اول (1375)، 466- 459.
  12. ش. صوراسرافیل، رنگهای ایرانی، انتشارات موسسه تحقیقات فرش دستباف ایران، (1378)، ص 124.
  13. E. S. Ferreira, A. N. Hulme, H. McNab, A. Quye, The natural constituents of historical textile dyes. Chem. Soc. Rev. 33(2004), 329-336.
  14. A. R. Burnett, R. H. Thomson, Naturally occurring quinones. Part XV. Biogenesis of the anthraquinones in Rubia tinctorum L. (Madder), J. Chem. Soc. C: Org. (1968), 2437-2441.
  15. H. Uslu, H.S. Bamu, Effect of solvent and pH on the extraction of carbolic acid from aqueous solution by TOMAC, J. Chem. Eng. 61(2016), 1676–1680.
  16. A. M. Tessier, P. Delaveau, B. Champion, New anthraquinones in Rubia cordifolia roots, Planta medica 41(1981), 337-343.
  17. C. Dosseh, A. M. Tessier, P. Delaveau, New quinones in Rubia cordifolia L. Roots, III." Planta medica 43(1981), 360-366.
  18. H. Itokawa, K. Mihara, K. Takeya, Studies on a novel anthraquinone and its glycosides isolated from Rubia cordifolia and R. akane. Chem. Pharma. Bull. 31(1983), 2353-2358.
  19. A. C. Hermans-Lokkerbol, R. Van Der Heijden, R. Verpoorte, Solvent system selection for separation of anthraquinones by means of centrifugal partition ochromatography; application to an extract of a rubia Tinctorum Hairy Root Culture, J. Liq. Chromatogr. Related Technol. 16(1993) 1433-1451.
  20. V. Camel, Microwave-assisted solvent extraction of environmental samples, Trends Anal. Chem. 19(2000), 229-248.
  21. J. Yuan, J. Huang, G. Wu, J. Tong, G. Xie, J. A. Duan, M. Qin, Multiple responses optimization of ultrasonic-assisted extraction by response surface methodology (RSM) for rapid analysis of bioactive compounds in the flower head of Chrysanthemum morifolium Ramat, Ind. Crops Prod. 74(2015), 192–199.
  22. H. Bahman, K. Gharanjig, S. Rouhani, Environmentally friendly dye for dye-sensitized solar cells from roots and stems of Berberis vulgaris, Int. J. Environ. Sci.Technol. 16(2019), 4019-4034.