Department of Carpet, Art University of Shiraz, Shiraz, Iran
Abstract
In the last decade, carbon nanofibers have been considered as an effective adsorbent in the removal of water and wastewater pollutants due to their specific properties such as high surface area and length to diameter ratio. Increasing the surface porosity and surface area of special carbon nanofibers by physical and chemical activation methods have increased their efficiency in removing pollutants. In this study, the activated carbon nanofibers were produced in four steps of electrospinning of polyacrylonitrile solution in dimethylformamide as precursor, followed by stabilization, carbonization and physical activation of electrospun nanofibers. At each stage of production, by changing the parameters affecting the process and analyzing the final product with DSC, FTIR, XRD, SEM and BET tests, optimum production conditions were determined to achieve maximum stabilization, carbonization and activation efficiency. Finally, produced activated carbon nanofibers applied as an adsorbent in removal treatment dye solution and were able to absorb 20-37% more than other conventional adsorbents such as chitin and activated carbon.
D. Foray, A. Grübler, Technology and the environment: an overview, Technol. Forecast. Soc. Change. 53 (1996), 3-13.
A. Salic, B. Zelic, Introduction to environmental engineering. Phys. Sci. Rev. 3 (2018( , 17-29.
F. D. Chequer, G. A. R. de Oliveira, E. A. Ferraz, J. C. Cardoso, M. B. Zanoni, D. P. de Oliveira, Textile dyes: dyeing process and environmental impact. Eco-friendly Text dye Finish. 2013, 151-176.
M. A. Hassaan, A. El Nemr, Health and environmental impacts of dyes: mini review. Ame J. Environ. Sci. Engin. 1 (2017), 64-67.
F. Li, J. Huang, Q. Xia, M. Lou, B. Yang, Q. Tian, Y. Liu, Direct contact membrane distillation for the treatment of industrial dyeing wastewater and characteristic pollutants. Sep. Purif. Technol. 195 (2018), 83-91.
خ. دیدهبان، ف. کرماجانی، حذف ماده رنگزای مستقیم قرمز 31 از محلولهای آبی با استفاده از نانوکامپوزیتهای هیدروژلی سنتز شده. علوم و فناوری رنگ. (1398) 13، 130-119.
ن. محمودی، مروری بر رنگبری پسابهای رنگی با فرآیند جذب سطحی. مطالعات در دنیای رنگ. (1392)3، 62-51.
X. Qu, P. J. Alvarez, Q. Li, Applications of nanotechnology in water and wastewater treatment. Water Res. 47 (2013), 3931-3946.
Z. Niu, L. Liu, L. Zhang, X. Chen, Porous graphene materials for water remediation. Small. 10(2014), 3441-3434.
R. Salehi, F. Dadashian, E. Ekrami, Acid dyes removal from textile wastewater using waste cotton activated carbon: Kinetic, isotherm, and thermodynamic studies. Prog. Color Colorants Coat. 6(2018), 9-20.
م. باقری، ح. نظرپور نجفآبادی، مطالعات ایزوترم، سینتیک و ترمودینامیک حذف ماده رنگزای اسید نارنجی 7 با استفاده از پر مرغ وکربن آن. مجله علمی علوم و فناوری رنگ. (1399)2، 141-129.
U. Karra, S. S. Manickam, J. R. McCutcheon, N. Patel, B. Li, Power generation and organics removal from wastewater using activated carbon nanofiber (ACNF) microbial fuel cells (MFCs). Int J. hydrog. Energy. 38 (2013), 1588-1597.
K. Zare, V. K. Gupta, O. Moradi, A. S. H. Makhlouf, M. Sillanpää, M. N. Nadagouda, H. Sadegh, R. Shahryari-Ghoshekandi, A. Pal, Z.-j. Wang, A comparative study on the basis of adsorption capacity between CNTs and activated carbon as adsorbents for removal of noxious synthetic dyes: a review. J. Nanostructure Chem. 5 (2015), 227-236.
S. Sadighian, M. Abbasi, S. Arjmandi, H. Karami, Dye removal from water by zinc ferrite-graphene oxide nanocomposite. Prog. Color Colorants Coat. 11 (2018), 85-92.
N. M. Rodriguez, A review of catalytically grown carbon nanoflbers. Comment. Rev. (1993), 23-40.
C. Kim, S. H. Park, J. I. Cho, D. Y. Lee, T. J. Park, W. J. Lee, K. S. Yang, Raman spectroscopic evaluation of polyacrylonitrile-based carbon nanofibers prepared by electrospinning. J. Raman Spect. 35 (2004), 928–933.
N. Bhardwaj, S. C. Kundu, Electrospinning: A fascinating fiber fabrication technique. Biotech. Adv. 28 (2010), 325-347.
D. Reneker, I. Chun, Nanometer diameter fibers of polymer, produced by electrospinning. Nanotechnology. 7 (1996), 216.
Z. Wangxi, L. Jie, W. Gang, Evolution of structure and properties of PAN precursors during their conversion to carbon fibers. Carbon. 41 (2003), 2805–2812.
پ. نورپناه، ش. ارباب، مقدمه ای بر الیاف کربن، دانشگاه صنعتی امیرکبیر، 1389، 160.
S. Rafiei, B. Noroozi, S. Arbab and A. Haghi, Characteristic assessment of stabilized polyacrylonitrile nanowebs for the production of activated carbon nano-sorbents. Chinese J. Polym. Sci. 32 (2014), 449-457.
Y. Yamashita, N. Aoki, F. Ko, H. Miyake, carbonization conditions for electrospun nanofiber of polyacrylonitrile copolymer. Indian J. Fiber Text. Res. 33 (2008), 345-353.
M. Kaburagi, Y. Bin, D. Zhu, C.Xu, M. Matsuo, Small angle Xray scattering from voids within fibers during the stabilization and carbonization stages. Carbon. 41 (2003), 915-926.
S. Kumar, A.-T. Chien, Use, stabilization and carbonization of polyacrylonitrile/carbon composite fibers, US pat. 9771669, 2014.
V. Barranco, M. Lillo-Rodenas, A. Linares-Solano, A. Oya, F. Pico, J. Iban˜ ez, F. Agullo-Rueda, J. Amarilla, J. Rojo, Amorphous carbon nanofibers and their activated carbon nanofibers as supercapacitor electrodes. J. Phys. Chem. C. 114 (2010), 10302–10307.
V. Jimenez, J. Valverde, P. Sanchez, A. Romero, Chemical activation of fish-bone type carbon nanofiber. Carbon. 9(2008), 12-19.
S. S. Belyaeva, I. V. Arkhangelsky, I. V. Makarenkob, Non-isothermal kinetic analysis of oxidative stabilization processes in PAN fibers. Thermochim. Acta. 507–508 (2010), 9-14.
R. Eslami Farsani, S. Raissi, A. Shokuhfar, A. Sedghi, FT-IR study of stabilized pan fibers for fabrication of carbon fibers. World Acad. Sci Engin. Technol. 50 (2009), 12-19.
I. Shimada, T. Takahagi, FT-IR Study of the Stabilization Reaction of Polyacrylonitrile in the Production of Carbon Fibers, J. Polym Sci. Part A. 24 (1986), 1989-1995.
D. Esrafilzadeh, M. Morshed, H. Tavanai, An investigation on the stabilization of special polyacrylonitrile nanofibers as carbon or activated carbon nanofiber precursor. Synth. Met. 159 (2009), 267–272.
E. Zussman, X. Chen, W. Ding , L. Calabri, D. A. Dikin b, J.P. Quintana, R. S. Ruoff, Mechanical and structural characterization of electrospun PAN-derived carbon nanofibers. Carbon. 43 (2005), 2175–2185.
J. W. Lukens, P. Schmidt-Winkel, D. Zhao, J. Feng, G. Stucky, Evaluating pore sizes in mesoporous materials: A simplified standard adsorption method and a simplified broekhoff-de boer method. Langmuir. 15 (1999), 5403-5409.
J. Im, S. Park, T. Kimc, Y. Kim, Y. Lee, The study of controlling pore size on electrospun carbon nanofibers for hydrogen adsorption. J. Colloid Interface Sci. 318 (2008), 42-49.
Rafiei, S. (2020). Optimization and Production of Polyacrylonitrile Based Activated Carbon Nanofibers for Dye Wastewater Treatment. Journal of Color Science and Technology, 14(4), 281-294.
MLA
S. Rafiei. "Optimization and Production of Polyacrylonitrile Based Activated Carbon Nanofibers for Dye Wastewater Treatment", Journal of Color Science and Technology, 14, 4, 2020, 281-294.
HARVARD
Rafiei, S. (2020). 'Optimization and Production of Polyacrylonitrile Based Activated Carbon Nanofibers for Dye Wastewater Treatment', Journal of Color Science and Technology, 14(4), pp. 281-294.
VANCOUVER
Rafiei, S. Optimization and Production of Polyacrylonitrile Based Activated Carbon Nanofibers for Dye Wastewater Treatment. Journal of Color Science and Technology, 2020; 14(4): 281-294.