Synthesis of Magnesium Aluminate-Grapheme Oxide Composite for Dye Removal

Document Type : Original Article

Authors

Faculty of Chemical Engineering, Urmia University of Technology, Urmia, Iran

Abstract

The aim of this research is to synthesis and modify the low cost MgAl2O4-based photocatalyst. For this purpose, MgAl2O4 was first synthesized by sol-gel combustion method and then the effect of calcination temperature on the photocatalytic performance of semiconductor was evaluated through the elimination of methylene blue. In the next step, magnesium aluminate/graphene oxide composite was synthesized by three methods; sol-gel combustion, surface grafting by APS and hydrothermal method. The obtained samples were also employed for dye degradation to understand the role of synthesis method on the composite activity. Samples were characterized by X-ray diffraction, Fourier-transform infrared spectroscopy and Field emission scanning electron microscopy. The photocatalytic activity was evaluated by measuring the level of MB degradation by UV spectroscopy. Results show that the presence of amorphous phase has a considerable effect on the photocatalytic performance of magnesium aluminate. Furthermore, graphene oxide nanosheets play an important role in the improvement of photocatalytic activity. Synthesis of composite by addition of graphene to the precursor, in the hydrolysis step of sol-gel combustion method, yields significantly superior photocatalytic activity compared to those synthesized by other two methods, so that 79% and 98% of methylene blue elimination could be achieved under 180 minutes of lamp and sun light irradiation, respectively.

Keywords

Main Subjects


  1. C. H. Nguyen, C. C Fu, R. S Juang, Degradation of methylene blue and methyl orange by palladium-doped TiO2 photocatalysis for water reuse: Efficiency and degradation pathways. J. Cleaner Prod. 202(2018), 413-427.
  2. G. Zhao, C. Li, X. Wu, J. Yu, X. Jiang, Reduced graphene oxide modified NiFe-calcinated layered double hydroxides for enhanced photocatalytic removal of methylene blue. Appl. Surf. Sci. 434(2018), 251-259.
  3. S. Dawood, T. K Sen, C. Phan, Performance and dynamic modelling of biochar and kaolin packed bed adsorption column for aqueous phase methylene blue (MB) dye removal. Environ. Technol. (2018), 1-11.
  4. M. Kharub, Use of various, technologies, methods and adsorbents for the removal of dye. J. Environ. Res. Dev. (2012), 879-883.
  5. L. Mouni, L. Belkhiri, J. C Bollinger, A. Bouzaza, A. Assadi, A. Tirri, F. Dahmoune, K. Madani, H. Remini, Removal of methylene blue from aqueous solutions by adsorption on kaolin: kinetic and equilibrium studies. Appl. Clay Sci. 153(2018), 38-45.
  6. N. Demirkıran, G. D. Turhan Ozdemir, M. Sarac, M. Dardagan, Adsorption of methylene blue from aqueous solutions by pyrolusite ore. Mongolian J. Chem. 18(2018), 5-11.
  7. D. Bhatia, N. R. Sharma, J. Singh, R. S. Kanwar, Biological methods for textile dye removal from wastewater: A review. Crit. Rev. Environ. Sci. Technol. 47(2017), 1836-1876.
  8. ا. سهولی، ف. شه‌دوست فرد، ف. نظری، ارزیابی کارایی مهم‌ترین روش‌های حذف مواد رنگزا. نشریه علمی مطالعات در دنیای رنگ. (1397)8، 93-77.
  9. P. Praveena, S. Dhanavel, D. Sangamithirai, V. Narayanan, A. Stephen, Visible light driven photocatalytic degradation of methylene blue using novel camphor sulfonic acid doped polycarbazole/g-C3N4 nanocomposite. AIP Conference Proceedings, AIP Publishing (2018), 1942: 050131.
  10. س. گندمی، ع. صباغ الوانی، ع. بقایی، ح. سامعی، ر. سلیمی، ا. مصطفوی موسوی، نانو رنگدانه‌های دی اکسید تیتانیم سیاه: سنتز، ویژگی‌ها و کاربردها. نشریه علمی مطالعات در دنیای رنگ. (1397)8،  38-23.

11.M. Hosseini-Zori, Z. Mokhtari shourijeh, Synthesis, characterization and investigation of photocatalytic activity of transition metal-doped TiO2 nanostructures. Prog. Color, Colorants Coat. 11(2018), 209-220.

12.X. Guo, P. Yin, K. Kanamori, K. Nakanishi, H. Yang, Sol–gel preparation of hierarchically porous magnesium aluminate (MgAl2O4) spinel monoliths for dye adsorption. J. Sol-Gel Sci. Technol. 88(2018), 114-128.

13.Z. Mosayebi, M. Rezaei, N. Hadian, F. Z. Kordshuli, F. Meshkani, Low temperature synthesis of nanocrystalline magnesium aluminate with high surface area by surfactant assisted precipitation method: Effect of preparation conditions. Mater. Res. Bull. 47(2012), 2154-2160.

14.M. F. Zawrah, H. Hamaad, S. Meky, Synthesis and characterization of nano MgAl2O4 spinel by the co-precipitated method. Ceram. Int. 33(2007), 969-978.

15.X. Zhang, Hydrothermal synthesis and catalytic performance of high-surface-area mesoporous nanocrystallite MgAl2O4 as catalyst support. Mater. Chem. Phys. 116(2009), 415-420.

16.S. A. Bocanegra, A. D. Ballarini, O. A. Scelza, S. R. Miguel, The influence of the synthesis routes of MgAl2O4 on its properties and behavior as support of dehydrogenation catalysts. Mater. Chem. Phys. 111(2008), 534-541.

17.G-j. Li, Z-ru. Sun, Ch-huan. Chen, X-jun. Cui, R-ming. Ren, Synthesis of nanocrystalline MgAl2O4 spinel powders by a novel chemical method. Mater. Lett. 61(2007), 3585-3588.

18.D. Domanski, G. Urretavizcaya, F. J. Castro, F. C. Gennari, Mechanochemical synthesis of magnesium aluminate spinel powder at room temperature. J. Am. Ceram. Soc. 87(2004), 2020-2024

19.A. Saberi, F. Golestani-Fard, H. Sarpoolaky, M. Willert-Porada, Th. Gerdes, R. Simon, Chemical synthesis of nanocrystalline magnesium aluminate spinel via nitrate–citrate combustion route. J. Alloys Compd. 462(2008), 142-146.

20.I. Ganesh, R. Johnson, G. V. N. Rao, Y. R. Mahajan, S. S. Madavendra, B. M. Reddy, Microwave-assisted combustion synthesis of nanocrystalline MgAl2O4 spinel powder. Ceram. Int. 31(2005), 67-74.

21.S. Salem, Application of autoignition technique for synthesis of magnesium aluminate spinel in nano scale: Influence of starting solution pH on physico-chemical characteristics of particles. Mater. Chem. Phys. 155(2015), 59-66.

22.G. Shilpa, K. Yogendra, K. M. Mahadevan, N. Madhusudhana, A. M. Saanthosh, A Comparative study over degradation of direct green 6 by using synthesized magnesium aluminate and magnesium zincate nanoparticles. IOSR J. Appl. Chem. 11(2018), 1-8.

23.A. Motevalian, Sh. Salem, Effect of glycine–starch mixing ratio on the structural characteristics of MgAl2O4 nano-particles synthesized by sol–gel combustion. Particuology. 24(2016), 108-112.

24.X. Qian, B. Li, H. Mu, J. Ren, Y. Hao, F. –t. Li, Deep insight into the photocatalytic activity and electronic structure of amorphous earth-abundant MgAl2O4. Inorg. Chem. Front. 4(2017), 1832-1840.

25.F. T. Li, Y. Zhao, Y. Liu, Y. Hao, R. Liu, Di. Zhao, Solution combustion synthesis and visible light-induced photocatalytic activity of mixed amorphous and crystalline MgAl2O4 nanopowders. Chem. Eng. J. 173(2011), 750-759.

26.R. Talebi, S. Khademolhoseini, S. Rahnamaeiyan, Preparation and characterization of the magnesium aluminate nanoparticles via a green approach and its photocatalyst application. J. Mater. Sci.: Mater. Electron. 27(2016), 1427-1432.

27.M. Y. Nassar, I. S. Ahmed, I. Samir, A novel synthetic route for magnesium aluminate (MgAl2O4) nanoparticles using sol–gel auto combustion method and their photocatalytic properties. Spectrochim. Acta Part A. (2014), 131: 329-334.

28.E. L. Foletto, S. L. Jahn, R. F. P. Muniz Moreira, Synthesis of high surface area MgAl2O4 nanopowder as adsorbent for leather dye removal. Sep. Sci. Technol. 44(2009), 2132-2145.

29.H. Li, Y. Liu, J. Tang, Y. Deng, Synthesis, characterization and photocatalytic properties of Mg1−xZnxAl2O4 spinel nanoparticles. Solid State Sci. (2016), 58: 14-21.

30.J. Su, Q. Shang, T. Guo, Sh. Yang, X. Wang, Q. Ma, H. Guan, F. Xu, Sh. Ch. Tsang, Construction of heterojunction ZnFe2O4/ZnO/Ag by using ZnO and Ag nanoparticles to modify ZnFe2O4 and its photocatalytic properties under visible light. Mater. Chem. Phys. 219(2018), 219: 22-29.

31.L. M. Pastrana-Martínez, S. Morales-Torres, J. L. Figueiredo, J. L. Faria, A. M. T. Silva, Graphene photocatalysts. Multifunctional Photocatalytic Materials for Energy, Elsevier (2018), 79-101.

32.S. A. Hosseini, Investigation of the structural, photocatalytic and magnetic properties of MgAl2O4/NiTiO3 nanocomposite synthesized via sol–gel method. J. Mater. Sci.: Mater. Electron. 28(2017), 10765-10771.

33.M. Muneeb, B. Ismail, T. Fazal, A. Rehman Khan, M. Afzia, Adsorption Assisted Photocatalytic Removal of Methyl Orange by MgAl2O4-Sb2S3 Composite Material. Recent patents on nanotechnology 10(2016), 213-220.

34.Y. Nazari, S. Salem, Efficient photocatalytic methylene blue degradation by Fe3O4@ TiO2 core/shell linked to graphene by aminopropyltrimethoxysilane, Environ. Sci. Pollut. Res. (2019), 25359-25371.

35.Z. Cheng, D. Ding, X. Nie, Y. Xu, Z. Song, T. Fu & W. Tan, Fabrication of GO/magnetic graphitic nanocapsule/TiO2 assemblies as efficient and recyclable photocatalysts. Sci. China Chem. 58(2015), 1131-1136.

36. پ. کاظمی، ش. سالم، حذف عامل رنگ‌زا از پساب به کمک فوتوکاتالیست آناتاز تثبیت‌شده بر پایه متاکائولن. نشریه علمی علوم وفناوری رنگ. (1397)12، 292-281.

37.M. Rezaei, S. Salem, Photocatalytic activity enhancement of anatase–graphene nanocomposite for methylene removal: degradation and kinetics. Spectrochim. Acta Part A. 167(2016), 41-49.

38. م. رضایی، ش. سالم، ا. سالم، افزایش فعالیت کاتالیزور نوری نانو ذرات TiO2 تحت تابش نور مرئی با استفاده از نانو ورقه‌های اکسید گرافن.  نشریه علمی علوم و فناوری رنگ. (1395) 10، 21-13.

39.J. Sun, L. Qiao, S. Sun, G. Wang, Photocatalytic degradation of Orange G on nitrogen-doped TiO2 catalysts under visible light and sunlight irradiation. J. Hazard. Mater. 155(2008), 312-319.

40. ع. غلامی آردی، س. بهرامی، م. آرامی، ا. پژوتن، حذف کاتالیزوری نوری ماده رنگ­زا توسط الکترود اصلاح‌شده با نانو ذرات دی‌اکسیدتیتانیم-اکسیدگرافن و بهینه‌سازی به روش رویه پاسخ. نشریه علمی علوم و فناوری رنگ. (1397)11، 202-187.

41.N. Aghajari, Z.  Ghasemi, H. Younesi, N. Bahramifar, Synthesis, characterization and photocatalytic application of Ag-doped Fe-ZSM-5@TiO2 nanocomposite for degradation of reactive red 195 (RR 195) in aqueous environment under sunlight irradiation. J. Environ. Health Sci. Eng. 17(2019), 219.

42.Z. Haijun, J. Xiaolin, L. Zhanjie, L. Zhenzhen The low temperature preparation of nanocrystalline MgAl2O4 spinel by citrate sol–gel process. Mater. Lett. 58(2004), 1625-1628.

43.H. Shahbazi, M. Tataei, A novel technique of gel-casting for producing dense ceramics of spinel (MgAl2O4). Ceram. Int. 45(2019), 8727-8733.

44.D. F. Ollis, Photocatalytic purification and remediation of contaminated air and water. C. R. Acad. Sci. Ser. IIC Chem. 3(2000), 405-411.

45.K. M. Reza, A. S. W. Kurny, F. Gulshan, Parameters affecting the photocatalytic degradation of dyes using TiO2: a review. Appll. Water Sci. 7(2017), 1569-1578.

46.M. N.Chong, B Jin, B., C. W. Chow, C. Saint, Recent developments in photocatalytic water treatment technology: a review. Water Res.  44(2010), 2997-3027.

47.J. M. Herrmann, Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants. Catal. Today, 53(1999), 115-129.

48.T. Gholami, M. Salavati-Niasari, M. Sabet, Novel green synthesis of ZnAl2O4 and ZnAl2O4/graphene nanocomposite and comparison of electrochemical hydrogen storage and Coulombic efficiency. J. Cleaner Prod. 178(2018), 14-21.

49.P. Lee, H. Suematsu, T. Yano, K. Yatsui, Synthesis and characterization of nanocrystalline MgAl2O4 spinel by polymerized complex method. J. Nanopart. Res. 8(2006), 911-917.

50.M. Kanna, S. Wongnawa, Mixed amorphous and nanocrystalline TiO2 powders prepared by sol–gel method: characterization and photocatalytic study. Mater. Chem. Phys. 110(2008), 166-175.

51.J. Li, X. Zhang, S. Wang, C. Li, In2S3 nano flakes-functionalized cotton cellulose electrospun nanofibers for visible light photocatalysis. IC3ME, 138(2015), 89-91. 

52.S. Yousefi, M. Haghighi, B. R. Vahid, Facile and efficient microwave combustion fabrication of Mg-spinel as support for MgO nanocatalyst used in biodiesel production from sunflower oil: Fuel type approach. Chem. Eng. Res. Design. 138(2018), 506-518.

53.Y. Nazari, S. Salem, Magnetisation of TiO2/reduced graphene oxide nano photocatalyst. Int. Proc. Chem. Biol. Environ. Eng. (IPCBEE). 102(2017), 50-56.

54.G. He, J. Ding, J. Zhang, Q. Hao, H. Chen, One-step ball-milling preparation of highly photocatalytic active CoFe2O4–reduced graphene oxide heterojunctions for organic dye removal. Ind. Eng. Chem. Res. 54(2015), 2862-2867.

55.Y. Yuan, H. Bi, G. He, J. Zhu, H. Chen, A facile hydrothermal synthesis of a MnCo2O4@ reduced graphene oxide nanocomposite for application in supercapacitors. Chem. Lett. 43(2013), 83-85.

56.Y. Fu, H. Chen, X. Sun, X. Wang, Combination of cobalt ferrite and graphene: high-performance and recyclable visible-light photocatalysis. Appl.Catal. B. (2012), 111: 280-287.

57.F.Wu, W. Duan, M. Li, H. Xu, Synthesis of MgFe2O4/Reduced Graphene Oxide Composite and Its Visible-Light Photocatalytic Performance for Organic Pollution. Int. J. Photoenergy (2018), 9: 969.

58.Z. Zhu, J. Zhang, W. Li, Ag/MgAl2O4 nanoparticles Prepared by a Modified Hydrothermal for Photocatalytic Degradation of Methylene Blue. Prepr. (2017), 1-25.

59.E. A. Asl, M. Haghighi, A. Talati, Sono-solvothermal fabrication of flowerlike Bi7O9I3-MgAl2O4 pn nano-heterostructure photocatalyst with enhanced solar-light-driven degradation of methylene blue. Solar Energy. 184(2019), 426-439.