Effect of Mass Fraction of Water Nanodroplet and Water Content on the Localization Location of Dye Within Microemulsion

Document Type : Original Article

Authors

1 Zabol University, Faculty of Basic Sciences, Physics Department, Zabol, Iran

2 Zahedan University, Faculty of Basic Sciences, Department of Physics, Zahedan, Iran

3 Velayat University, Faculty of Basic Sciences, Physics Department, Iranshahr, Iran

Abstract

In this work, effect of water content as dispersed phase of water/AOT/oil microemulsions on the droplet size and location of hydrophilic probe‎ of Rhodamine B (RhB) within microemulsion was studied by means of dynamic light scattering (DLS) and absorption spectroscopy. The dynamical characterization of micelles by DLS technique showed that by increasing the water content within AOT microemulsion containing dye with certain concentration, the droplet size increased and the interactions between nano-droplets were more attractive as a function of the mass fraction of nano-droplets (MFD). Study of the dye spectroscopy within microemulsion indicated that the changes in λmax of absorption of dye within AOT microemulsion decreased as W increased with MFD.  It was also observed that hydrophilic dye of Rhodamine B can be located near tail of AOT (Gouy Chapman Layer) of microemulsion in addition to the locating into the water/oil interface (Stern Layer) but not in water droplet. On the other hand, the number of formed AOT-RhB ion pair complex in the oil increased with decrease in content of water of within water/AOT/oil microemulsion.

Keywords

Main Subjects


  1. M. Firoz-Khan, M. Kiran-Singh, S. Sen, Measuring Size, Size-Distribution and polydispersity of water-in-oil microemulsion droplets using fluorescence correlation spectroscopy: comparison to dynamic light scattering. J. Phys. Chem. B. 120 (2016), 1008- 1020.
  2. A. Rahdar, M. Almasi-Kashi, Dynamic and spectroscopic studies of nano-micelles comprising dye in water/ dioctyl sodium sulfosuccinate /decane droplet microemulsion at constant water content. J. Mol. Struct. 1128 (2017), 257-267.
  3. V. R. Hande, S. Chakrabarty, Exploration of the presence of bulk-like water in AOT reverse micelles and water- in-oil nanodroplets: the role of charged interfaces, confinement size and properties of water. Phys. Chem. Chem. Phys. 18(2016), 21767-79.
  4. E. Bardez, R. Giordano, M. P.Jannelli, P. Migliardo, U. Wanderlingh, Hydrogen-bond effects induced by alcohol on the structure and dynamics of ionic reverse micelles. J. Mol. Structure. 383(1996), 183–190.
  5. A. Rahdar, M. Almasi-Kashi, N. Mohamed, Light scattering and optic studies of Rhodamine B-comprising cylindrical- like AOT reversed micelles. J . Mol. Liq. 223 (2016),1264-1269.
  6. A. Rahdar, M. Almasi-Kashi,Photophysics of Rhodamine B in the nanosized water droplets: A concentration dependence study. J. Mol. Liq. 220 (2016), 395–403.
  7. A. Rahdar, M. Almasi-Kashi, Dynamic light scattering of nano-gels of xanthan gum biopolymer in colloidal dispersion. J. Adv. Res. 7( 2016), 635-641.
  8. W. Meier, Langmuir, Structured polymer networks from O/W-Microemulsions and liquid crystalline phases. Langmuir. 12(1996), 6341-6345.
  9. A. Rahdar , M. Almasi-Kashi, M. Aliahmad, Effect of chain length of oil on location of dye within AOT nanometer-sized droplet microemulsions at constant water content. J .Mol. Liq. 233 (2017), 398-402.
  10. J. P. Cerón‐Carrasco,D. Jacquemin, C.Laurence, A.Planchat, C.Reichardt, K.Sraïdi, Solvent polarity scales: determination of new ET (30) values for 84 organic solvents. J. Phys. Org. Chem. 27(2014), 512-518.
  11. S. De, S. Das, A.Girigoswami , Environmental effects on the aggregation of some xanthene dyes used in lasers, Spectrochim. Acta. A Mol. Biomol. Spectrosc. 61 (2005) 1821-1833.
  12. K. K. Karukstis, D. A. Savin, C. T. Loftus, N. D. D’Angelo, Spectroscopic studies of the interaction of methyl orange with cationic alkyltrimethylammonium bromide surfactants. J. Colloid. Interface. Sci. 203 (1998), 157–163.
  13. T. Fujieda, K. Ohta, N. Wakabayashi, S. Higuchi, H-aggregation of Methyl Orange at the Interface between the waterphase and oil phase in a water- in-oil microemulsion. J. Coll. Int. Sci. 185(1997), 332-334.
  14. O. Ortona, V.Vitagliano, B.H.Robinson, Dye Interactions with surfactants in colloidal dispersions. J. Coll. Int. Sci. 125(1988), 271-278.
  15. M. Hasegawa, T. Sugimura, Y. Shindo, A. Kitahara, Structure and properties of AOT reversed micelles as studied by the fluorescence probe technique. Colloids. Surf. A. 109(1996), 305-318.
  16. M. D'Angelo, D. Fioretto, G. Onori, A. Santucci, Micellar interactions in water- in-oil microemulsions. J. Mol. Struct. 383 (1996), 157-163.
  17. T. Bayraktutan, K.Meral, Y.Onganer, Photophysical properties of pyronin dyes in reverse micelles of AOT. J. Lumin. 145 (2014), 925–929.
  18. N. M. Correa, J. J. Silber, Binding of nitroanilines to reverse micelles of AOT n- hexane. J. Mol. Liq. 72(1997), 163-76.
  19. G. B. Dutt, Fluorescence anisotropy of ionic probes in aot reverse micelles: Influence of water droplet size and electrostatic interactions on probe dynamics. J. Phys. Chem. B. 112 (2008), 7220–7226.
  20. V. Crupi, G. Maisano, D. Majolino, R. Ponterio, V. Villari, E. Caponetti, Quasi-elastic light scattering in polymer-containing microemulsion. J. Mol. Struct. 383(1996), 171-5.
  21. D. P. Acharya, P. G. Hartley, Progress in microemulsion characterization. Curr. Opin. Colloid Interface Sci. 17 (2012), 274–280.
  22. M. J. Hou, M. Kim, D. O.Shah, A light scattering study on the droplet size and interdroplet interaction in microemulsions of AOT-oil-water system. J. Colloid. Interface. Sci. 123(1988), 398-412.
  23. Effects of the molecular structure of the interface and continuous phase on solubilization of water in water/oil microemulsions. Langmuir. 3 (1987), 1086-1096.
  24. G. M. E. Diaz, A. Sanz-Medel, Dye-surfactant interactions: a review. Talanta. 33 (1986), 255-264.
  25. D. A. Skoog, F. J. Holler, Principles of Instrumental Analysis, 5 ed. Saunders College Publication, Philadelphia, 1998.
  26. F. L.Arbeloa, P. R.Ojeda, I. L.Arbeloa, Flourescence self-quenching of the molecular forms of Rhodamine B in aqueous and ethanolic solutions. Chem .Phys .Lett. 148 (1988), 253.
  27. B. Valeur, M. N. Berberan-Santos, Molecular Fluorescence, Principles and Applications, 2ed, Wiley-VCH, Weinheim, 2012.
  28. H.Gochman-Hecht, H. Bianco-Peled, Structure of AOT reverse micelles under shear.  J. Colloid Int. Sci. 288 (2005), 230-237.
  29. ص. مهویدی، ع. آشتیانی عبدی، ف. نورمحمدیان، ارتباط رنگ و ساختار مواد رنگزای آلی: مروری بر بیش از یک قرن پژوهش. نشریه علمی مطالعات در دنیای رنگ. (1393)3، 103-85.
  30. ف. نورمحمدیان، م. داودزاده غلامی، ع. آشتیانی‌عبدی، بررسی اثرات حلال پوشی بر دینامیک مولکولی و جذب و نشر نور مواد رنگزای فوتوکرومیک بر پایه آزواسپیروپیران‌ها. نشریه علمی علوم و فناوری رنگ. (1394)9، 271-259.
  31. O. Valdes-Aguilera,  D.C.Neckers , Aggregation phenomena in xanthene dyes, Acc .Chem. Res. 22 (1989) 171–177.
  32.  F.L.Arbeloa P.R.Ojeda I.L.Arbeloa , On the aggregation of rhodamine B in ethanol, Chem .Phys .Lett. 148 (1988), 253-258.
  33. M. A. Ali, J. Moghaddasi, S. A. Ahmed , Optical properties of cooled Rhodamine B in ethanol, J .Opt .Soc .Am. B  8(1991),  1807-1810.
  34. ف.خاکزار بفروئی، ه. خلیلی، م. صفی، جداسازی اجزای فاکتور تشعشعات کلی مواد رنگزای فلورسنت. نشریه علمی پژوهشی علوم و فناوری رنگ. (1394)9، 361-351.
  35. س. باستانی؛ م. پیشوایی؛ م. جلیلی؛ ش. سروش‌نیا ، تأثیر غلظت و توزیع اندازه ذرات رنگدانه بر رفتار رئولوژیکی مرکب‌های لیتوگرافی. نشریه علمی پژوهشی علوم و فناوریرنگ. (1389)4، 103-91.
  36. م. دهقانی، ن. نصیری‌زاده، س. جعفری، اندازه‌گیری مستقیم ماده رنگزای راکتیو نارنجی 84 در نمونه‌های در حال رنگبری با استفاده از الکترود کربن شیشه‌ای اصلاح شده با اکسید گرافن / نانوذرات نقره. نشریه علمی پژوهشی علوم و فناوری رنگ (1397)12، 92-81.