Simultaneous Application of Graphene Oxide and CNT for Photocatalytic Activity Improvement of TiO2

Document Type : Original Article

Authors

Faculty of Chemical Engineering, Urmia University of Technology

Abstract

Synthesis of TiO2- based composite by using carbonous materials can solve some restrictions related to the application of titanium dioxide in industrial scale. In this study carbon nanotubes (CNTs), graphene oxide (GO) and reduced graphene oxide (RGO) are used to improve the photocatalytic activity of TiO2 for the degradation of methylene blue under visible light irradiation and the effect of simultaneous usage of graphene sheets and CNTs are evaluated through the enhancement of TiO2 degradation activity. The photocatalytic activity and characterization of as-prepared samples were evaluated by Fourier transform-infrared spectroscopy, X-ray diffraction, Field emission scanning electron microscopy and UV-Vis Spectrophotometer. Results indicate the successful preparationof TiO2-CNT-GO nanocomposite by sol-gel method. Moreover the simultaneous using of graphene sheets and CNT can prove the composite decoloration activity. The maximum photocatalytic degradation of MB (94%) is achieved within 90 min. The enhanced photocatalytic activity of TiO2-CNT-GO nanocomposite can be ascribed to the high surface area, severe electron transmission and monotone distribution of carbon based nanoparticles.

Keywords

Main Subjects


  1. M. N. Rashed, M. Eltaher, A. Abdou, Adsorption and photocatalysis for methyl orange and Cd removal from wastewater using TiO2/sewage sludge-based activated carbon nanocomposites. R. Soc. Open sci. 4(2017), 170834.
  2. I. K. Konstantinou, T.A. Albanis, TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: a review. Appl. Catal. B. 49(2004), 1-14.
  3. V. K. Gupta, I. Ali, T. A. Saleh, A. Nayak, S. Agarwal, Chemical treatment technologies for waste-water recycling-an overview. Rsc Adv. 2(2012), 6380-6388.
  4. P. Nidheesh, M. Zhou, M. A. Oturan, An overview on the removal of synthetic dyes from water by electrochemical advanced oxidation processes. Chemosphere. 197(2018), 210-227.
  5. R. Andreozzi, V. Caprio, A. Insola, R. Marotta, Advanced oxidation processes (AOP) for water purification and recovery. Catal. Today. 53(1999), 51-59.
  6. N. S. Mishra, R. Reddy, A. Kuila, A. Rani, P. Mukherjee, A. Nawaz, S. Pichiah, A review on advanced oxidation processes for effective water treatment. Curr World Environ. 12(2017), 470-490.
  7. K. Kabra, R. Chaudhary, R. L. Sawhney, Treatment of hazardous organic and inorganic compounds through aqueous-phase photocatalysis: a review. Ind. Eng. Chem. Res. 43(2004), 7683-7696.
  8.  س. سیف‌اله زاده، م. منتظر، خودتمیزشوندگی لکه متیلن بلو و اسید بلو 113 روی پارچه پشم/پلی‌استر عمل شده با نانو دی‌اکسید تیتانیوم زیر نورفرابنفش بدون زردی. نشریه علمی علوم و فناوری رنگ. (1389)2، 123-115.
  9. آ. اله‌قلیان، ع. مهری‌زاد، پ. غربانی. جذب سطحی رنگزای آبی‌ متیلن از محلول‌های آبی بر روی نانو TiO2 عامل‌دارشده. نشریه علمی علوم و فناوری رنگ. (1394)9، 43-35.
  10. R. Mohamed, D. McKinney, and W. Sigmund, Enhanced nanocatalysts. Mater. Sci. Eng: R: Reports. 73(2012), 1-13.
  11. F. Frenso, R. Poretla, S. Suarez and J. Coronado, Photocatalytic materials: recent achievements and near future trends. J. Mater. Chem. A. 9(2014), 1-20.
  12. A. Fujishima, T. N. Rao, D. A. Tryk, Titanium dioxide photocatalysis. J. Photochem. Photobiol. C. 1(2000), 1-21.
  13. ع. بقایی، ع. ا. صباغ‌ الوانی، ح. سامعی، ر. سلیمی. بررسی تاثیر دما در تهیه دی‌اکسید تیتانیم نانومیله روتایل به روش هیدروترمال جهت کاربردهای فوتوکاتالیستی. نشریه علمی علوم و فناوری رنگ. (1397)4، 259-251.
  14. پ. کاظمی، ش. سالم، حذف عامل رنگزا از پساب به کمک فوتوکاتالیزور آناتاز تثبیت شده بر پایه متاکائولن. نشریه علمی علوم و فناوری رنگ. (1397)4، 292-281.
  15. O. Carp, C.L. Huisman, A. Reller, Photoinduced reactivity of titanium dioxide. Prog. Solid State Chem. 32(2004), 33-177.
  16. S. Salem, A. Salem, M. Rezaei, Facile decoration of TiO2 nanoparticles on graphene for solar degradation of organic dye. Solid State Sci. 61(2016), 131-135.
  17. M. Rezaei, S. Salem, Photocatalytic activity enhancement of anatase–graphene nanocomposite for methylene removal: degradation and kinetics. Spectrochim. Acta Part A. 167(2016), 41-49
  18. A. A. Aziz, Y. H. Yau, G. L. Puma, C. Fischer, S. Ibrahim, S. Pichiah, Highly efficient magnetically separable TiO2–graphene oxide supported SrFe12O19 for direct sunlight-driven photoactivity. Chem. Eng. J. 235(2014), 264-274.
  19. G. Jiang, Z. Lin, C. Chen, L. Zhu, Q. Chang, N. Wang, W. Wei, H. Tang, TiO2 nanoparticles assembled on graphene oxide nanosheets with high photocatalytic activity for removal of pollutants. Carbon. 49(2011), 2693-2701.
  20. J. J. Shim, Ionic liquid mediated synthesis of graphene–TiO2 hybrid and its photocatalytic activity. Mater. Sci. Eng. 180(2014), 38-45.
  21. M. Shi, J. Shen, H. Ma, Z. Li, X. Lu, N. Li, M. J. C. Ye, S. A. Physicochemical, and E. Aspects, Preparation of graphene–TiO2 composite by hydrothermal method from peroxotitanium acid and its photocatalytic properties. Colloid Surf. A. 405(2012), 30-37.
  22. M. Rezaei, S. Salem, Optimal TiO2–Graphene Oxide Nanocomposite for Photocatalytic Activity under Sunlight Condition: Synthesis, Characterization, and Kinetics. Int. J. Chem. Kinet. 48(2016), 573-583.
  23. R. Leary, A. Westwood, Carbonaceous nanomaterials for the enhancement of TiO2 photocatalysis. Carbon. 49(2011), 741-772.
  24. W.-C. Oh, M.-L. Chen, Synthesis and characterization of CNT/TiO2 composites thermally derived from MWCNT and titanium (IV) n-butoxide. Bull. Korean Chem. Soc. 29(2008), 159-164.
  25. A. Miribangul, X. Ma, C. Zeng, H. Zou, Y. Wu, T. Fan, Z. Su, Synthesis of TiO2/CNT composites and its photocatalytic activity toward Sudan (I) degradation. Photochem. Photobiol. 92(2016), 523-527.
  26. V.B. Koli, A.G. Dhodamani, S. D. Delekar, S. H. Pawar, In situ sol-gel synthesis of anatase TiO2-MWCNTs nanocomposites and their photocatalytic applications. J. Photochem. Photobiol. A. 333(2017), 40-48.
  27. M. Ahmadi, H. R. Motlagh, N. Jaafarzadeh, A. Mostoufi, R. Saeedi, G. Barzegar, S. Jorfi, Enhanced photocatalytic degradation of tetracycline and real pharmaceutical wastewater using MWCNT/TiO2 nano-composite. J. Environ. Manage. 186(2017), 55-63.
  28. Y. Huang, D. Chen, X. Hu, Y. Qian, D. Li, Preparation of TiO2/Carbon Nanotubes/Reduced Graphene Oxide Composites with Enhanced Photocatalytic Activity for the Degradation ofRhodamine B. Nanomater. 8(2018), 431.
  29. Y. Huang, D. Chen, X. Hu, Y. Qian, D. Li, Preparation of TiO2/carbon nanotubes/reduced graphene oxide composites with enhanced photocatalytic activity for the degradation of rhodamine B. Nanomater. 6(2017), 431.
  30. B. Gao, G. Z. Chen, G. L. Puma, Carbon nanotubes/titanium dioxide (CNTs/TiO2) nanocomposites prepared by conventional and novel surfactant wrapping sol–gel methods exhibiting enhanced photocatalytic activity. Appl. Catal. B. 89(2009), 503-509.
  31. M. Q. Yang, N. Zhang, Y. J. Xu, Synthesis of fullerene–, carbon nanotube–, and graphene–TiO2 nanocomposite photocatalysts for selective oxidation: a comparative study. ACS Appl. Mater. Interfaces. 5(2013), 1156-1164.
  32. Y. Haldorai, A. Rengaraj, C. H. Kwak, Y. S. Huh, Y.-K. Han, Fabrication of nano TiO2@ graphene composite: reusable photocatalyst for hydrogen production, degradation of organic and inorganic pollutants. Synth. Met. 198(2014), 10-18.
  33. P. Qin, G. Yi, X. Zu, H. Wang, H. Luo, M. Tan, Preparation of graphene-TiO2 nanocomposite films and its photocatalytic performances on degradation of Rhodamine B. Pigment Resin Technology. 47(2018), 79-85.
  34. M. T. Yagub, T. K. Sen, Sh. Afroze, H. M. Ang, Dye and its removal from aqueous solution by adsorption: A review. Adv. Colloid Interface Sci. 209 (2014), 172-184.
  35. A. M. Kamil, H.T. Mohammed, A. A. Balakit, F.H. Hussein, D.W. Bahnemann, G.A. El-Hiti, Synthesis, Characterization and photocatalytic activity of carbon nanotube/titanium dioxide nanocomposites. Arabian J. Sci. Eng. 43(2018), 199-210.
  36. S. Dhall, G. Vaidya, N. Jaggi, Joining of broken multiwalled carbon nanotubes using an electron beam-induced deposition (EBID) technique. J. Electron. Mater. 43(2014), 3283-3289.
  37. T. D. Nguyen-Phan, V. H. Pham, E. W. Shin, H. D. Pham, S. Kim, J. S. Chung, E. J. Kim, S. H. Hur, The role of graphene oxide content on the adsorption-enhanced photocatalysis of titanium dioxide/graphene oxide composites. Chem. Eng. J. 170(2011), 226-232.
  38. X. Zhoua, T. Shi, H. Zhou, Hydrothermal preparation of ZnO-reduced graphene oxide hybrid with high performance in photocatalytic degradation. Appl. Surf. Sci. 258(2012), 6204– 6211
  39. A. Shafei, S. Sheibani, Visible light photocatalytic activity of Cu doped TiO2-CNT nanocomposite powder prepared by sol-gel method. Mater. Res. Bull. 110(2019), 198-206.
  40. M. Božič, V. Vivod, R. Vogrinčič, I. Ban, G. Jakša, S. Hribernik, D. Fakin, V. Kokol, Enhanced catalytic activity of the surface modified TiO2-MWCNT nanocomposites under visible light. J. Colloid Interface Sci. 465(2016), 93-105.
  41. Sh. H. Huang, Ch. C, Wang, Sh. Y. Liao, J. Y. Gan, T. P. Perng, CNT/TiO2 core-shell structures prepared by atomic layer deposition and characterization of their photocatalytic properties. Thin Solid Films. 616(2016), 151–159.
  42. E. Lee, J. Y. Hong, H. Kang, J. Jang, Synthesis of TiO2 nanorod-decorated graphene sheets and their highly efficient photocatalytic activities under visible-light irradiation. J. Hazard. Mater. 220(2012), 13– 18.
  43. A. A. Ismail, R. A. Geioushy, H. Bouzid, S. A. Sayari, A. Hajry, D. W. Bahnemann, TiO2 decoration of graphene layers for highly efficient photocatalyst: Impact of calcination at different gas atmosphere on photocatalytic efficiency. Appl. Catal. B. 129(2013), 62– 70.
  44. X. Rong, F. Qiu, Ch. Zhang, L. Fu, Y. Wang, D. Yang, Preparation, characterization and photocatalytic application of TiO2–graphene photocatalyst under visible light irradiation. Ceramics Int. 41(2015), 2502-2511.