Effect of Siloxane Crosslinking on Colloidal, Mechanical, and Thermal Properties of Self-curable Waterborne Polyurethane Dispersions

Document Type : Original Article

Authors

1 Department of Polymer Engineering and Color Technology, Amirkabir University of Technology

2 POLYMAT, Department of Polymer Science and Technology, University of the Basque Country (UPV/EHU)

Abstract

Self-curable waterborne polyurethane (WPU) dispersions were prepared via acetone process. The effects of (3-aminopropyl) triethoxysilane (APTES) content as crosslinking agent on the properties of WPUs were investigated. To confirm the polymer structure and the presence of alkoxysilane groups, 1H nuclear magnetic resonance and fourier transform infrared spectroscopy were used. Gel content of the sample containing 10 wt% APTES was reported 90.5% which were revealed highly crosslinking network of the WPU film. Although the particle size went up from 36.5 to 63 nm by introducing 10 wt% APTES, narrow particle size distributions (PDI < 0.2) and the absolute value of zeta potentials greater than 40 mV were obtained. Furtheremore, atomic force microscopy showed that the introduction of siloxane crosslinking increased microphase-separation of the polyurethane films. In the presence of 10 wt% APTES, excellent enhancement in water resistance (water absorption < 5%), mechanical properties (Young’s modulus=420 MPa and tensile strength=46.7 MPa), and thermal stability (Tmax1=321 ºC and Tmax2=407 ºC) made this type of crosslinking highly suitable for WPUs in coating applications. 

Keywords

Main Subjects


  1. S. Y. A Kang, Z. Ji, L. F. Tseng, S. A. Turner, D. A. Villanueva, R. Johnson, A. Albano, R. Langer, Design and synthesis of waterborne polyurethanes. Adv. Mater. 30 (2018), 1706237-1706243.
  2. M. V. Hormaiztegui, M. I. Aranguren, V. L. Mucci, Synthesis and characterization of a waterborne polyurethane made from castor oil and tartaric acid. Eur. Polym. J. 102 (2018), 151-160.
  3. H. Liang, S. Wang, H. He, M. Wang, L. Liu, J. Lu, Y. Zhang, C. Zhang, Aqueous anionic polyurethane dispersions from castor oil. Ind. Crops Prod. 122 (2018), 182-189.
  4. S. Saalah, L. C. Abdullah, M. M. Aung, M. Z. Salleh, D. R. A. Biak, M. Basri, E. R. Jusoh, S. Mamat, Colloidal stability and rheology of jatropha oil-based waterborne polyurethane (JPU) dispersion. Prog. Org. Coat. 125 (2018), 348-357.
  5. J. W. Rosthauser, K. Nachtkamp, Waterborne polyurethanes. J. coat. Fabr. 16 (1986), 39-79.
  6. H. Sardon, L. Irusta, M.J. Fernández‐Berridi, J. Luna, M. Lansalot, E. Bourgeat‐Lami, Waterborne polyurethane dispersions obtained by the acetone process: A study of colloidal features. J. Appl. Polym. Sci. 120 (2011), 2054-2062.
  7. م. خراسانی، ا. زرگرللهی، ع. ا. صباغ الوانی، س. کیانی، اثر نوع عامل انتقال زنجیر بر خواص فیزیکی پراکنه‌های پلی یورتان پایه آبی. نشریه علمی پژوهشی علوم و فناوری رنگ. (1393) 30، 316-307.
  8. Q. Li, J. Ye, T. Qiu, L. Guo, L. He, X. Li, Synthesis of waterborne polyurethane containing alkoxysilane side groups: Study on spacer linkages. J. Appl. Polym. Sci. 135 (2018), 46628-46637.
  9. X. Yin, X. Li, Y. Luo, Synthesis and characterization of multifunctional two-component waterborne polyurethane coatings: fluorescence, thermostability and flame retardancy. Polym. 9 (2017), 492.

10.X. Yin, Y. Luo, J. Zhang, Synthesis and characterization of halogen-free flame retardant two-component waterborne polyurethane by different modification. Ind. Eng. Chem. Res. 56 (2017), 1791-1802.

11.Z. Niu, F. Bian, Synthesis and characterization of multiple cross-linking UV-curable waterborne polyurethane dispersions. Iranian Polym. J. 21 (2012), 221-228.

12.H. Sardon, L. Irusta, M. J. Fernández-Berridi, M. Lansalot, E. Bourgeat-Lami, Synthesis of room temperature self-curable waterborne hybrid polyurethanes functionalized with  (3-aminopropyl) triethoxysilane (APTES). Polym. 51 (2010), 5051-5057.

13.C. Tao, Z. Luo, J. Bao, Q. Cheng, Y. Huang, G. Xu, Effects of macromolecular diol containing different carbamate content on the micro-phase separation of waterborne polyurethane. J. Mater. Sci. 53 (2018), 8639-8652.

14.H. Zhou, H. Wang, X. Tian, K. Zheng, Q. Cheng, Effect of 3-aminopropyltriethoxysilane on polycarbonate based waterborne polyurethane transparent coatings. Prog. Org. Coat. 77 (2014), 1073-1078.

15.H. Wang, Y. Niu, G. Fei, Y. Shen, J.  Lan, In-situ  polymerization, rheology, morphology and properties of stable alkoxysilane-functionalized poly (urethane-acrylate) microemulsion. Prog. Org. Coat. 99 (2016), 400-411.

16.H. Sardon, L. Irusta, P. Santamaría, M. Fernández-Berridi, Thermal and mechanical behaviour of self-curable waterborne hybrid polyurethanes functionalized with (3-aminopropyl) triethoxysilane. J. Polym. Res. 19 (2012), 9956-9964.

17.E. Yilgör, E. Burgaz, E. Yurtsever, I. Yilgör, Comparison of hydrogen bonding in polydimethylsiloxane and polyether based urethane and urea copolymers. Polym. 41 (2000), 849-857.

18.Y. Xia, R.C. Larock, Preparation and properties of aqueous castor oil‐based polyurethane–silica nanocomposite dispersions through a sol–gel process. Macromol. Rapid Commun. 32 (2011), 1331-1337.

19.C. Fu, X. Hu, Z. Yang, L. Shen, Z. Zheng, Preparation and properties of waterborne bio‐based polyurethane/siloxane cross-linked films by an in situ sol–gel process. Prog. Org. Coat.  84 (2015), 18-27. 

20.L. Lei, Y. Zhang, C. Ou, Z. Xia, L. Zhong, Synthesis and characterization of waterborne polyurethanes with alkoxy silane groups in the side chains for potential application in waterborne ink. Prog. Org. Coat. 92 (2016(, 85-94