Co-precipitation Synthesis of CdTe/ ZnS, ZnSe, CdS and CdSe Core-Shell Quantum Dots

Document Type : Original Article

Authors

1 Institute of Nanotechnology, University of Sistan and Baluchestan,Zahedan, Iran

2 Department of Materials Engineering, Faculty of Engineering, University of Sistan and Baluchestan, Zahedan, Iran

3 Department of Inorganic Pigments and Glazes, Institute for Color Science and Technology, Tehran, Iran

4 Chemical Engineering Department, Faculty of Engineering, University of Sistan and Baluchestan, Zahedan, Iran

Abstract

In the present work CdTe/ ZnS, ZnSe, CdS, CdSe core-shell quantum dots were synthesized via co-precipitation route. The effect of reflux intervals from 1 to 7 hours, on the CdTe cores, characteristics such as: photoluminescence properties, band gap, structure, and microstructure were studied. Results showed that synthesis with the reflux time of 1 hour led to proper CdTe core with the size of about 4nm, emission wavelength of 555 nm, and band gap of 2.25 eV. More reflux time caused to particle size enlargement, emission shift to higher wavelength values, and band gap decrease. Moreover, ZnS, ZnSe, CdS, and CdSe shells were in-situ synthesized on the CdTe cores. Formation of these shells led to emission red shift with the wavelength up to 591 nm and band gap decrease to 2.15 eV.

Keywords

Main Subjects


  1. A. Qu, H. Xie, X. Xu,Y. Zhang. S. Wen,Y. Cui, High quantum yield graphene quantum dots decorated TiO2 nanotubes for enhancing photocatalytic activity. Appl. Surf. Sci. 375(2016), 230–241.
  2. J. J. L. Hmar, T. Majumder, S. Dhar, S. P. Mondal, Sulfur and nitrogen co-doped graphene quantum dot decorated ZnO nanorod/polymer hybrid flexible device for photosensing applications. Thin Solid Films. 612(2016), 274–283.
  3. M. Bruchez Jr., M. Moronne, P. Gin, S. Weiss, A. P. Alivisatos, Semiconductor nanocrystals as fluorescent biological labels. Sci. 281(1998), 2013–2016.
  4. H. Chen, Z. Zhen, T. Todd, P. K. Chu, J. Xie, Nanoparticles for improving cancer diagnosis. Mater. Sci. Eng. R Rep. 74(2013) 35–69.
  5. D. A. Hines, P. V Kamat, Recent advances in quantum dot surface chemistry. ACS Appl. Mater. Interfaces, 6(2014), 3041–3057.
  6. B. O. Dabbousi, J. Rodriguez, F. V Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, M. G. Bawendi, (CdSe)ZnS core−shell quantum dots:  synthesis and characterization of a size series of highly luminescent nanocrystallites. J. Phys. Chem. B. 101(1997), 9463–9475.
  7. J. Lim, W. K. Bae, J. Kwak, S. Lee, C. Lee, K. Char, Perspective on synthesis, device structures, and printing processes for quantum dot displays. Opt. Mater. Express. 2(2012), 594–628.
  8. Y. Kuo, Q. Wang, C. Ruengruglikit, H. Yu, Q. Huang, Y. Kuo, Q. Wang, C. Ruengruglikit, H. Yu, Q. Huang, Antibody-conjugated cdte quantum dots for escherichia coli detection. J. Phys. Chem. C 112(2008), 4818–4824.
  9. J. Wang, H. Han, Hydrothermal synthesis of high-quality type-II CdTe/CdSe quantum dots with near-infrared fluorescence. J. Colloid Interface Sci. 351(2010), 83–87.
  10. C. H. Hwang, J. Park, M. Song, J. H. Lee, I. W. Shim, Syntheses of CdTe quantum dots and nanoparticles through simple sonochemical method under multibubble sonoluminescence conditions. Bull. Korean Chem. Soc., 32(2011), 2207–2211.
  11. T. T. Gan, Y. J. Zhang, N. J. Zhao, X. Xiao, G. F. Yin, S. H. Yu, H. B. Wang, J. B. Duan, C. Y. Shi, W. Q. Liu, Hydrothermal synthetic mercaptopropionic acid stabled CdTe quantum dots as fluorescent probes for detection of Ag+, Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 99(2012), 62–68.
  12. Y. L. Wang, S. Y. Liu, L. Y. Zhou, An alternative aqueous synthetic route to preparing CdTe quantum dots with tunable photoluminescence. Chinese Chem. Lett. 23(2012), 359–362.
  13. L. Li, S. Yang, W. Jing, Z. Jiang, F. Han, Enhanced photocurrent gain by CdTe quantum dot modified ZnO nanowire. Sensors Actuators. A Phys. 232(2015), 292–298.
  14. S. Ebrahim, M. Reda, A. Hussien, D. Zayed, CdTe quantum dots as a novel biosensor for Serratia marcescens and Lipopolysaccharide. Spectrochim. Acta - Part A Mol. Biomol. Spectrosc.150(2015), 212–219.
  15.  م. روشنی، م. مأوائی، سنتز، شناسایی ساختاری و ارزیابی فعالیت کاتالیزور نوری نقاط کوانتومی CdTe با فعال‌سازی به وسیله نور مرئی برای تخریب و رنگ‌زدایی کاتالیزور نوری آلاینده‌های آلی.نشریهعلمیپژوهشیعلوموفناوریرنگ. 10(1395)، 127-117.
  16. B. Zhou, F. Yang, X. Zhang, W. Cheng, W. Luo, L. Wang, and W. Jiang, One-pot aqueous phase synthesis of CdTe and CdTe/ZnS core/Shell quantum dots. J. Nanosci. Nanotechnol. 16(2016), 5755–5760.
  17. S. Kim, B. Fisher, H. J. Eisler, and M. Bawendi, Type-II quantum dots: CdTe/CdSe (core/shell) and CdSe/ZnTe (core/shell) heterostructures. J. Am. Chem. Soc. 125(2003), 11466–11467.
  18. 18.                 م. طاهریان، ع. صباغ الوانی، ف. طباطبایی حسینی، ر. سلیمی، ش. موسی‎خانی، نقاط کوانتومی: از ساخت تا کاربرد، نشریه علمی ترویجی مطالعات در دنیای رنگ. 2(1391)، 16-9.
  19. A. Kitai, Luminescent Materials and Applications, Wiley, (2008), 1–18.