Investigation of Self-Healing Properties of Epoxy Resin Containing Carbon Nanocapsules Doped With Epoxy and Polyamine Agents Using Scanning Vibrating Electrode Technique

Document Type : Original Article

Authors

1 Chemical and Petroleum Engineering Department, Sharif University of Technology

2 Chemical and Petroleum Engineering, Sharif university of Technology

3 Surface Coating and Corrosion Department, Institute for Color Science and Technology

4 Department of Materials Science and Engineering, Delft University of Technology

Abstract

Nowadays, self-healing process and compensating of the applied damages without any tracking of physical intervention has become one of the subjects of interest for researchers. Self-healing ability is especially used for protective coatings in order to enhance both stability and durability. In this study, carbon nanospheres were used to fabricate the self-healing protective coatings based on epoxy resin. In the first step, carbon spherical nanostructures were synthesized according to the hard templating method. In the second step, doping of epoxy and polyamine agents in the spherical structures were performed using vacuum jar method. Then, 8 wt. % of the epoxy doped carbon nanospheres and 4 wt. % of the polyamine doped carbon nanospheres in stoichiometry ratio were dispersed uniformly in epoxy matrix. Finally, the morphology of the synthesized carbon nanocapsules and self-healing performance of the fabricated coatings were evaluated using field emission scanning electron microscopy (FE-SEM) and scanning vibrating electrode technique (SVET). The results showed that due to the applying of artificial scratches on the coatings and fracture of the doped capsules, release of epoxy and polyamine from carbon capsules and performing of curing reactions between them led to the healing of the scratch regions.

Keywords


  1. P. Kardar, H. Yari, M. Mahdavian, B. Ramezanzadeh, Smart self-healing polymer coatings: mechanical damage repair and corrosion prevention. Ind. Appl. Intell. Polym. Coat. Springer, (2016), 511–535.
  2. X. Wang, J. Feng, Y. Bai, Q. Zhang, Y. Yin, Synthesis, Properties, and applications of hollow micro-/nanostructures. Chem. Rev. 116(2016), 10983-11060
  3. .پ. کاردر، ح. یاری، پوشش‌های خود تمیزشونده جهت بازیابی آسیب‌های مکانیکی  ـ مبانی، طراحی و کاربرد. نشریه علمی ترویجی مطالعات در دنیای رنگ. (1394)5، 95-85.
  4. S. Scharf, M. Noeske, W. L. Cavalcanti, Multi-functional, self-healing coatings for corrosion protection: materials, design and processing, Handb. Smart Coatings Mater. Prot. (2014), 75.
  5. س. آ. حدادیان، ا. رمضانی سعادت‌آبادی، م. مهدویان احدی. مروری بر روش‌های ساخت نانو کره‌های توخالی کربنی جهت استفاده در پوشش‌های سطح. نشریه علمی ترویجی مطالعات در دنیای رنگ. (1396)7، 16-1.
  6. ل. رسولی، ر. نادری محمودی، م. مهدویان احدی، ا. م. اعرابی. اثر ساختار زئولیت به عنوان حامل بازدارنده معدنی بر خوردگی فوالد نرم در محلول سدیم کلراید. نشریه علمی پژوهشی علوم و فناوری رنگ. (1395)10، 277-267.
  7. A. Golgoon, M. Aliofkhazraei, M. Toorani, A. R. Rouhaghdam, Corrosion Protection performance of nanoclay-polyester nanocomposite coatings. Prog. Color. Color. Coat. 9 (2016) 223–232.
  8. G. S. Sajadi, S. M. A. Hosseini, M. G. Bahrami, M. Shahidi, Electrochemical evaluation of polyvinyl butyral coating containing polypyrrole/zno nanocomposite for corrosion protection of al alloy. Prog. Color. Color. Coat. 10(2017), 205–216.
  9. د. رئیسی، ر. شجاع رضوی، م. طاهران، ارزیابی خواص مکانیکی و ضدخوردگی پوشش‌های نانوکامپوزیتی. Pu-SiC. نشریه علمی پژوهشی علوم و فناوری رنگ. (1394)9، 250-239.
  10. ب. نیک‌روش، ع. ا. سرابی، س. م. کثیریها، بررسی اثر پیگمنت‌های اکسید آهن میکایی و آلومینیم ورقه‌ای بر افزایش مقاومت پوشش با روش EIS و آزمون مه نمکی. نشریه علمی پژوهشی علوم و فناوری رنگ. (1387)2، 236-227.
  11. S. J. García, H. R. Fischer, P. A. White, J. Mardel, Y. González-García, J. M. C. Mol, A. E. Hughes, Self-healing anticorrosive organic coating based on an encapsulated water reactive silyl ester: Synthesis and proof of concept. Prog. Org. Coat. 70(2011), 142–149.
  12. S. K. Ghosh, Self-healing materials: fundamentals, design strategies, and applications, John Wiley & Sons, 2009.
  13. E. Alibakhshi, E. Ghasemi, M. Mahdavian, B. Ramezanzadeh, Corrosion Inhibitor release from Zn-Al-[PO43-]-[CO32-] layered double hydroxide nanoparticles. Prog. Color. Color. Coat. 9(2016), 233–248.
  14. H. Yi, Y. Deng, C. Wang, Pickering emulsion-based fabrication of epoxy and amine microcapsules for dual core self-healing coating. Compos. Sci. Technol. 133(2016), 51–59.
  15. H. Zhang, J. Wang, X. Liu, Z. Wang, S. Wang, High performance self-healing epoxy / polyamide protective coating containing epoxy microcapsules and polyaniline nano fi bers for mild carbon steel. Ind. Eng. Chem. Res., 52(2013), 10172-10180.
  16. X. Liu, H. Zhang, J. Wang, Z. Wang, S. Wang, Preparation of epoxy microcapsule based self-healing coatings and their behavior, Surf. Coatings Technol. 206 (2012), 4976–4980.
  17. P. A. Pratama, M. Sharifi, A. M. Peterson, G. R. Palmese, Room temperature self-healing thermoset based on the diels-alder reaction, ACS Appl. Mater. Interfaces. 5(2013), 12425–12431.
  18. M. Samadzadeh, S. H. Boura, M. Peikari, A. Ashrafi, M. Kasiriha, Tung oil: An autonomous repairing agent for self-healing epoxy coatings. Prog. Org. Coat. 70(2011), 383–387.
  19. Y. Bao, C. Shi, T. Wang, X. Li, J. Ma, Recent progress in hollow silica: Template synthesis, morphologies and applications. Microporous Mesoporous Mater. 227(2016), 121–136.
  20. S. Ikeda, K. Tachi, Y. H. Ng, Y. Ikoma, T. Sakata, H. Mori, T. Harada, M. Matsumura, Selective adsorption of glucose-derived carbon precursor on amino-functionalized porous silica for fabrication of hollow carbon spheres with porous walls. Chem. Mater. 19(2007), 4335–4340.
  21. E. Abdullayev, V. Abbasov, A. Tursunbayeva, V. Portnov, H. Ibrahimov, G. Mukhtarova, Y. Lvov, Self-healing coatings based on halloysite clay polymer composites for protection of copper alloys. ACS Appl. Mater. Interfaces. 5(2013), 4464–4471.
  22. N. Pirhady Tavandashti, M. Ghorbani, A. Shojaei, Y. Gonzalez-Garcia, H. Terryn, J.M.C. Mol, PH responsive Ce(III) loaded polyaniline nanofibers for self-healing corrosion protection of AA2024-T3. Prog. Org. Coat. 99(2016), 197–209.
  23. N. Pirhady Tavandashti, M. Ghorbani, A. Shojaei, J. M. C. Mol, H. Terryn, K. Baert, Y. Gonzalez-Garcia, Inhibitor-loaded conducting polymer capsules for active corrosion protection of coating defects. Corros. Sci. 112(2016), 138–149.
  24. A. Ghazizadeh, S. A. Haddadi, M. Mahdavian, The effect of sol–gel surface modified silver nanoparticles on the protective properties of the epoxy coating. RSC Adv. 6(2016), 18996–19006.
  25. S. A. Haddadi, M. Mahdavian, E. Karimi, Evaluation of the corrosion protection properties of an epoxy coating containing sol–gel surface modified nano-zirconia on mild steel. RSC Adv. 5(2015), 28769–28777.
  26. S. A. Haddadi, M. Mahdavian-Ahadi, F. Abbasi, Effect of nanosilica and boron carbide on adhesion strength of high temperature adhesive based on phenolic resin for graphite bonding. Ind. Eng. Chem. Res. 53(2014), 11747–11754.
  27. S. A. Haddadi, A. Ramazani SA, S. Talebi, S. Fattahpour, M. Hasany, Investigation of the effect of nanosilica on rheological, thermal, mechanical, structural, and piezoelectric properties of PVDF nanofibers fabricated using electrospinning technique. Ind. Eng. Chem. Res. 56(2017), 12596–12607.
  28. D. L. Pavia, Introduction to spectroscopy, Cengage Brain. Washington. 2009, 691-696.
  29. T. Siva, S. Sathiyanarayanan, Self healing coatings containing dual active agent loaded urea formaldehyde (UF) microcapsules. Prog. Org. Coatings. 82(2015), 57–67.