Effect of Temperature in Hydrothermally Rutile TiO2 Nanorod Synthesis for Photocatalytic applications

Document Type : Original Article

Authors

1 Faculty of Polymer and Paint Engineering, Amir Kabir University of Technology, Tehran, Iran

2 Research Institute of Paint and Polymer, Amir Kabir University of Technology, Tehran, Iran

3 Faculty of Paint and Polymer Engineering, Amir Kabir University of Technology

Abstract

In this article, role of temperature in rutile TiO2 nanorod synthesis by hydrothermal method was investigated due to one-dimensional oriented nanostructures application importance. Synthesis was studied at three level of temperatures such as 125, 150 and 175 ºC. The result of XRD, SEM and UV-Visible tests showed that crystallinity and crystallite size would increase in order to increment temperature, furthermore, the length and partly diameter of nanorods would enhance when temperature increased. Indeed, the length of nanorod at 125 ºC was about 0.5 microns, however, at 175 ºC was 1.7 microns. Moreover, photocatalytic activity of nanorods by measurement the degradation of methylene blue would increase but the efficiency would decrease when the temperature enhanced. Absorption diagram at different wavelengths demonstrated that the synthesized TiO2 nonarods had no absorption in UV region and also absorption decreased at higher wavelengths. The band gap for all samples were near 3 ev. The optimum temperature for reaching to best efficiency was 150 ºC. 

Keywords


  1. X. Wei, J. Liu, Y. Z. Chua, J. Song, X. W. Liuet, Fabrication of O (dye)-terminated Anatase TiO2 Nanosheets for Dye Sensitized Solar Cells. Energy Environ. Sci., 4(2011), 2054.
  2. R. Govidaraj, M. S. Pandian, P. Ramasamy, S. Mukhopadhyay, Sol–gel Synthesized Mesoporous Anatase Titanium Dioxide Nanoparticles for Dye Sensitized Solar Cell (DSSC) Applications. Bull. Mater. Sci., 38 (2015), 291–296.
  3. م. قراگوزلو، ی. گنج خانلو، تهیه پوشش‌های دی‌اکسید تیتانیم الاییده شده با آهن به روش پوشش‌دهی چرخشی پیش‌ماده پلیمری و بررسی فعالیت فوتوکاتالیزوری آنها تحت تابش نور مرئی. نشریه علمی پژوهشی علوم و فناوری رنگ. (1391)6 ، 319-313.
  4. Y. Xu, M. Schoonen, The absolute energy positions of conduction and valence bands of selected semiconducting minerals. Am. Miner., 85(2000), 543-556.
  5. D. O. Scanlon, Charles W. Dunnill, J. Buckeridge, S. A. Shevlin, A. J. Logsdail, S. M. Woodley, C. Richard, A. Catlow, M. J. Powell, Robert G. Palgrave, I. P. Parkin, G. W. Watson, T. W. Keal, P. Sherwood, A. Walsh, A. Sokol, Band Alignment of Rutile and Anatase TiO2. Nature Mater. 12(2013), 798–801.
  6. Y. Yu, D. Xu, Single-crystalline TiO2 Nanorods: Highly Active and Easily Recycled Photocatalysts. Appl. Catal. B. 73(2007), 166–171.
  7. O. Regan, M. Grätzel, A Low-Cost, High-Efficiency Solar Cell Based on Dye- sensitized Colloidal TiO2 Films. M. Nature (London), 353(1991), 737-740.
  8. Q. Jiang, X. Sheng, Y. Li, X. Feng, T. Xu, Rutile TiO2 Nanowires Perovskite Solar Cells. Royal Soc. Chem. (2014), 1-3.
  9. A. Fakharuddin, F. Di Giacomo, A. L. Palma, F. Matteocci, I. Ahmed, S. Razza, A. D Epifanio, S. Licoccia, J. Ismail, A. Di Carlo, T. M. Brown, R. Jose, Vertical TiO2 Nanorods as a Medium for Durable and High Efficiency Perovskite Solar Modules. ACS Nano, 9 (2015), 8420–8429.
  10. S. Dharani, H. Kumar Mulmudi, N. Yantara, P. Thi Thu Trang, N. Gyu Park, M. Graetzel, S. Mhaisalkar, N. Mathews, P. P. Boix, High Efficiency Electrospun TiO2 Nanofiber Based Hybrid Organic–inorganic Perovskite Solar cell. Royal Soc. Chem. Nanoscale, (2014), 1675–1679.
  11. S .S. Mali, C. Su Shim, H. Kyung Park, J. Heo, P. S. Patil, C. Kook Hong, Ultrathin Atomic Layer Deposited TiO2 for Surface Passivation of Hydrothermally Grown 1D TiO2 Nanorod Arrays for Efficient Solid State Perovskite Solar Cells. Chem. Mater., (2015).
  12. S. H. Kang, S. H. Choi, M. S. Kang, J. Y. Kim, H. S. Kim, T. Hyeon, Y. E. Sung, Nanorod-Based Dye-Sensitized Solar Cells with Improved Charge Collection Efficiency. Adv. Mater. 20(2008), 54–58.
  13. A. Kumar, K. Li, A. R. Madaria, C. Zhou. Sensitization of Hydrothermally Grown Single Crystalline TiO2 Nanowire Array with CdSeS Nanocrystals for Photovoltaic Applications. Nano Res., 4(2011), 1181–1190.
  14. R. Jenkins, R. L. Snyder, Introduction to X-ray powder diffractometry. John Wiley & Sons, 267, (2012).
  15. M. N. Rahaman, Ceramic processing, Wiley Online Library, (2006).
  16. J. D. Ng, B. Lorber, J. Witz, A. Théobald Dietrich, D. Kern, R. Giegé, The Crystallization of Biological Macromolecules from Precipitates: Evidence for Ostwald Ripening. J. Crystal Growth. 168(1996), 50-62.
  17. Y. Li, M. Guo, M, Zhang, X. Wang, Hydrothermal synthesis and characterization of TiO2 nanorod arrays on glass substrates. Mater. Res. Bull. 44(2009), 1232–1237.
  18. H. Huang, L. Pan, C. Keat Lim, H. Gong, J. Guo, M. Siu Tse, O. Kiang Tan, Hydrothermal Growth of TiO2 Nanorod Arrays and In Situ Conversion to Nanotube Arrays for Highly Efficient Quantum Dot-Sensitized Solar Cells. Small, 9(2013), 3153–3160.
  19. L. Meng, H. Chen, C. Li, M.P.dos Santos, Preparation and characterization of dye-sensitized TiO2 nanorod solar cells. Thin Solid Films. 577(2015), 103–108.