بررسی خواص و رفتار پخت سامانه تابش‌پز نانوکامپوزیت اپوکسی اکریلات/اکسید گرافن

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه آموزشی صنایع رنگ، دانشکده مهندسی پلیمر و رنگ، دانشگاه صنعتی امیرکبیر، تهران، ایران، صندوق پستی: ۴۴۱۳-۱۵۸۷۵

2 گروه آموزشی صنایع پلیمریزاسیون، دانشکده مهندسی پلیمر و رنگ، دانشگاه صنعتی امیرکبیر، تهران، ایران، صندوق پستی: ۴۴۱۳-۱۵۸۷۵

چکیده

در این پژوهش ویژگی‌ها و رفتار سینتیکی پخت نانوکامپوزیت اپوکسی اکریلات/گرافن اکسید و نیز احیای صفحات اکسید گرافن حین پخت سامانه با پرتو فرابنفش در حضور یک آغازگر نوع دوم بررسی شده است. آزمون­های میکروسکوپ نوری و میکروسکوپ الکترونی عبوری (TEM) نشان داد صفحات اکسید گرافن از پراکندگی خوبی در سامانه تابش­پز برخوردارند. نتایج رئومتری نشان داد نانو کامپوزیت رفتار رقیق­شونده برشی (Shear Thinning) از خود نشان داده و ویسکوزیته سامانه در نرخ­های برشی بالا کمتر از گرانروی رزین تابش­پز است. بررسی سینتیک پخت سامانه تابش­پز با استفاده از آزمون طیف‌سنجی زیر قرمز هم­زمان (RT-FTIR)، نشان داد حضور اکسید گرافن موجب کاهش میزان پخت نمونه­ها شده است. با این وجود نتایج مربوط به محتوای ژل نمونه­های نانوکامپوزیتی نشان داد با افزایش شدت و زمان تابش پرتو فرابنفش شبکه پلیمری با پخت کامل ایجاد می­شود. همچنین نتایج بررسی مقاومت الکتریکی نانوکامپوزیت نشان داد احیای تابشی نانو صفحات اکسید گرافن حین تابش فرابنفش انجام شده و مقاومت الکتریکی آن در کمتر از 150 ثانیه تا 50 درصد کاهش پیدا می­کند.

کلیدواژه‌ها


عنوان مقاله [English]

Investigation of the Properties and Curing Behavior of UV Curable Epoxyacrylate/Graphene Oxide Nanocomposite

نویسندگان [English]

  • Samane Jafarifard 1
  • Morteza Ebrahimi 1
  • Farhad Sharif 2
1 Color and Coatings Industry, Department of Polymer and Color Engineering, Amirkabir University of Technology, P.O. Box: 15875-4413, Tehran, Iran
2 Polymerization Industry, Department of Polymer and Color Engineering, Amirkabir University of Technology, P.O. Box: 15875-4413, Tehran, Iran
چکیده [English]

This paper investigates the curing behavior of epoxy acrylate/graphene oxide UV curable nanocomposite. Also, the simultaneous reduction of GO nanoplates during UV curing of nanocomposite containing type II photoinitiator was studied. Optical and transmission electron microscopies showed good GO nanoplate dispersion in UV curable matrix. Rheological results illustrate the shear thinning behavior of UV-curable nanocomposites so that in high shear rates, the viscosity of nanocomposite is lower than that of UV-curable matrix. Real-time FTIR analysis shows that GO causes a reduction in the curing rate and final conversion of the UV-curable system. However, gel content results show that more UV intensity and curing time led to perfect UV curing of the nanocomposite. An electrical resistance study on the UV-curable nanocomposites made GO reduction during UV irradiation, evidenced by halved electrical resistance of the nanocomposite in less than 150 seconds.

کلیدواژه‌ها [English]

  • UV curable system
  • Nanocomposite
  • Curing kinetic
  • Graphene oxide
  • Real time FTIR
  1. Decker C. Photoinitiated curing of multifunctional monomers. Acta Polym. 1994;347(43):333–47. https://doi.org/10.1002/ actp.1994.010450501
  2. Andrzejewska E, Andrzejewski M. Polymerization Kinetics of Photocurable Acrylic Resins. Polym Sci Part A-polymer Chem. 1997;36:665–73. https://doi.org/10.1002/(SICI)1099-0518(199803)36:4<665::AID-POLA15>3.0.CO;2-K
  3. Decker C. The use of UV irradiation in polymerization. Polym Int. 1998;45(2):133–41. https://doi.org/ 10.1002/(SICI)1097-0126(199802)45:2<133::AID-PI969>3.0.CO;2-F
  4. Decker C. Kinetic Study and New Applications of UV Radiation Curing. Macromol Rapid Commun. 2002;23(18):1067–93.https://doi.org/10.1002/marc. 200290014
  5. Ghanbari D, Shirkavand Hadavand B, Pishvaei M. Morphology and viscoelastic properties of UV cured-polyurethane acrylate/silicon carbide nanocomposites. Iran Polym J (English Ed [Internet]. 2021;30(1):35–45. Available from: https://doi.org/10.1007/s13726-020-00871-z
  6. Madhi A, Hadavand BS. UV-curable urethane acrylate zirconium oxide nanocomposites : Synthesis , study on viscoelastic properties and thermal behavior. J Compos Mater. 2018;52(21):1–10.https://doi.org/10.1177/0021998318756173 
  7. Sangermano M, Chiolerio A, Marti G, Martino P, Martino P. UV-Cured Acrylic Conductive Inks for Microelectronic Devices. Macromol Mater Eng. 2012;298(16):607–11. https://doi.org/10.1002/mame.201200072
  8. Giardi R, Porro S, Chiolerio A, Celasco E, Sangermano M. Inkjet printed acrylic formulations based on UV-reduced graphene oxide nanocomposites. 2013;48(3):1249–55. 

    https://doi.org/10.1007/s10853-012-6866-4

  9. Namvar Amghani A, Rezvani-Moghaddam A, Salami-Kalajahi M, Ranjbar Z. Role of Interphase Region on Electrical Conductivity of Epoxy-Reduced Graphene Oxide Nanocomposites. Journal of Color Science and Technology. 2023 Apr 21;17(1):77-91.
  10. Loh KP, Bao Q, Ang PK, Yang J. The chemistry of graphene. J Mater Chem 2010;20(12):2277–89. https://doi.org/10.1039/ B920539J
  11. Pei S, Cheng HM. The reduction of graphene oxide. Carbon N Y. 2012;50(9):3210–28. https://doi.org/10.1016/j.carbon. 2011.11.010
  12. Plotnikov VG, Smirnov VA, Alfimov M V, Shulga YM. The graphite oxide photoreduction mechanism. High Energy Chem. 2011;45:411–415. https://doi.org/10.1134/ S0018143911050158
  13. Smirnov VA, Denisov NN, Alfimov M V. Photochemical Reduction of Graphite Oxide. Nanotechnologies Russ. 2014;8:1–22. https://doi.org/10.1134/S1995078013010151
  14. Smirnov VA, Denisov NN, Plotnikov VG, Alfimov M V. Photochemical Processes in Graphene Oxide Films. High Energy Chem. 2016;50:54–63. https://doi.org/10.1134/ S0018143916010070
  15. Sangermano M, Marchi S, Valentini L, Bon SB, Fabbri P. Transparent and conductive graphene oxide/poly(ethylene glycol) diacrylate coatings obtained by photopolymerization. Macromol Mater Eng. 2011;296(5):401–7.  https://doi.org/ 10.1002/ mame.201000372
  16. Fabbri P, Valentini L, Bittolo Bon S, Foix D, Pasquali L, Montecchi M, et al. In-situ graphene oxide reduction during UV-photopolymerization of graphene oxide/acrylic resins mixtures. Polymer (Guildf). 2012;53(26):6039–44. https://doi.org/10.1016/j.polymer.2012.10.045
  17. Sharif M, Pourabbas B, Sangermano M, Sadeghi Moghadam F, Mohammadi M, Roppolo I, et al. The effect of graphene oxide on UV curing kinetics and properties of SU8 nanocomposites. Polym Int. 2017;66(3):405–17. https://doi.org/10.1002/pi.5271
  18. Bazargan AM, Sharif F, Mazinani S, Naderi N. Highly conductive reduced graphene oxide transparent ultrathin film through joule-heat induced direct reduction. J Mater Sci Mater Electron. 2016;28:1419–1427. https://doi.org/10.1007/ s10854-016-5676-x
  19. Mohamadzadeh MH, Sabury S, Gudarzi MM, Sharif F. Graphene Oxide-Induced Polymerization and Crystallization to Produce Highly Conductive Polyaniline / Graphene Oxide Composite. Polym Chem. 2014;52(11):1545–54. https://doi.org/10.1002/pola.27147
  20. Chowdhury AS, Rahman MM, Das HC, Islam MN, Khan MA. Enhancement of physico-mechanical properties of plywood surface with urethane acrylate (M-1200) by UV curing method. Polymer-Plastics Technology and Engineering. 2006. 45(12):1295-300. https://doi.org/10.1080/ 03602550600948913.
  21. Chakrabarti A, Lu J, Skrabutenas JC, Xu T, Xiao Z, Maguire JA, et al. Conversion of carbon dioxide to few-layer graphene. J Mater Chem. 2011;21(26):9491–3. https://doi.org/10.1039/ C1JM11227A
  22. Parvin N, Kumar V, Joo SW, Park SS, Mandal TK. Recent Advances in the Characterized Identification of Mono-to-Multi-Layer Graphene and Its Biomedical Applications: A Review. Electron. 2022;11(20). https://doi.org/10.3390/ electronics11203345
  23. Arrigo R, Malucelli G. Rheological behavior of polymer/carbon nanotube composites: An overview. Materials. 2020.13(12):2771. https://doi.org/10.3390/ ma13122771.
  24. Kotsilkova R, Tabakova S. Exploring Effects of Graphene and Carbon Nanotubes on Rheology and Flow Instability for Designing Printable Polymer Nanocomposites. Nanomaterials. 2023. 13(5):835. https://doi.org/10.3390/ nano13050835
  25. Baali N, Khecha A, Bensouici A, Speranza G, Hamdouni N. Assessment of Antioxidant Activity of Pure Graphene Oxide (GO) and ZnO-Decorated Reduced Graphene Oxide (rGO) Using DPPH Radical and H2O2 Scavenging Assays. J Carbon Res. 2019;5(4):75. https://doi.org/10.3390/c5040075
  26. Zhang C, Chen S, Alvarez PJJ, Chen W. Reduced graphene oxide enhances horseradish peroxidase stability by serving as radical scavenger and redox mediator. Carbon N Y [Internet]. 2015;94:531–8. Available from: http://dx.doi.org/ 10.1016/j.carbon.2015.07.036
  27. Ley C, Carré C, Ibrahim A, Allonas X. Application of High Performance Photoinitiating Systems for Holographic Grating Recording. In: Naydenova I, Babeva T, Nazarova D, (eds.) Holographic Materials and Optical Systems. Intechopen. Croatia. National and University Library in Zagreb. 2017.
  28. Andrzejewska E. Photopolymerization kinetics of multifunctional monomers. Progress in polymer science. 2001 May 1;26(4):605-65. https://doi.org/10.1016/S0079-6700(01) 00004-1
  29. Kardar P, Ebrahimi M, Bastani S. Curing behaviour and mechanical properties of pigmented UV-curable epoxy acrylate coatings. Pigment Resin Technol. 2014;43(4):177–84. https://doi.org/10.1108/PRT-07-2013-0054
  30. Kardar P, Ebrahimi M. Influence of temperature and light intensity on the photocuring process and kinetics parameters of a pigmented UV curable system. J. Therm. Anal. Calorim. 118. 541–549. 2014. https://doi.org/10.1007/s10973-014-3984-z
  31. Rahman MM, Khan MA, Uddin MK, Ali KMI, Mustafa AI. Effect of CaCo3 on the performance of partex surface modification by ultraviolet radiation curing method. J Appl Polym Sci. 2001;81(8):1858–67.  https://doi.org/10.1002/app.1619.
  32. Pei S, Cheng H. The reduction of graphene oxide. Carbon N Y [Internet]. 2012;50(9):3210–28.  http://dx.doi.org/10.1016/ j.carbon.2011.11.010.
  33. Zhu BY, Murali S, Cai W, Li X, Suk JW, Potts JR, et al. Graphene and Graphene Oxide : Synthesis , Properties , and Applications. Adv Mater. 2010;22:3906–24. https://doi.org/ 10.1002/adma.201001068
  34. Smirnov VA, Arbuzov AA, Baskakov SA. Photoreduction of Graphite Oxide. High Energy Chem. 2011;45:57–61. https://doi.org/10.1134/S0018143911010176 
  35. Le GTT, Manyam J, Opaprakasit P, Chanlek N, Grisdanurak N, Sreearunothai P. Divergent mechanisms for thermal reduction of graphene oxide and their highly different ion affinities. Diam Relat Mater. 2018. 246–56. https://doi.org/10.1016/j.diamond.2018.09.006
  36. Sangermano M, Pegel S, Po P, Voit B. Antistatic Epoxy Coatings With Carbon Nanotubes Obtained by Cationic Photopolymerization. 1991;396–400. https://doi.org/10.1002/ marc.200700720 
  37. Childres I, Jauregui LA, Park W, Caoa H, Chena YP. Raman spectroscopy of graphene and related materials. in: Jang, Joon I (ed.) New developments in photon and materials research 1. 2013; 403–18.
  38. Bon SB, Piccinini M, Mariani A, Kenny JM, Valentini L. Wettability and switching of electrical conductivity in UV irradiated graphene oxide films. Diam Relat Mater. 2011 Jul;20(7):871–4. https://doi.org/10.1016/ j.diamond. 2011.04.013.
  39. Lin Z, Yao Y, Li Z, Liu Y, Li Z, Wong C-P. Solvent-Assisted Thermal Reduction of Graphite Oxide. J Phys Chem. 2010 Sep 9;114(35):14819–25. https://pubs.acs.org/doi/10.1021/ jp1049843
  40. Yang D, Velamakanni A, Bozoklu G, Park S, Stoller M, Piner RD, et al. Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and Micro-Raman spectroscopy. Carbon N Y. 2009;47(1):145–52. https://doi.org/10.1016/j.carbon.2008.09.045.
  41. Ferralis N. Probing mechanical properties of graphene with Raman spectroscopy. J Mater Sci. 2010;45(19):5135–49. https://doi.org/10.1007/s10853-010-4673-3.
  42. Fishlock SJ, Grech D, McBride JW, Chong HMH, Pu SH. Mechanical characterisation of nanocrystalline graphite using micromechanical structures. Microelectron Eng. 2016;159:184–9. https://doi.org/10.1016/j.mee.2016.03.040.