تخریب کاتالیزوری نوری رنگ‌های آلی با استفاده از نانوذرات اکسید قلع سنتز شده در عصاره برگ توت در حضور نور خورشید

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه فیزیک، دانشگاه جهرم، جهرم، ایران

2 گروه مهندسی شیمی، دانشگاه صنعتی بیرجند، بیرجند، ایران

چکیده

در این تحقیق، برای اولین بار عصاره برگ درخت توت برای سنتز سبز نانوذرات اکسید قلع (SnO2) مورد استفاده قرار گرفت. در این روش، فلاونوئیدهای موجود در عصاره برگ درخت توت مسئول کاهش یون‌‌های فلزی و تبدیل آن‌‌ها به نانوذرات بودند. در تهیه نانوذرات از هیچ ماده شیمیایی سمی و حلال آلی استفاده نشد و نانوذرات در شرایط سبز تهیه شدند. پس از شناسایی نانوذرات تهیه شده با استفاده از تفرق اشعه ایکس ((XRD، ریخت شناسی آنها با استفاده از میکروسکوپ الکترونی عبوری (TEM) تعیین شد. سپس، فعالیت فوتوکاتالیستی نانوذرات SnO2 برای تخریب رنگ‌‌های آلی برموتیمول آبی، برموکروزول سبز و متیلن آبی بدون استفاده از هیچ گونه عامل کاهنده سمی و در معرض نور مستقیم خورشید به کمک طیف‌‌بینی ماورابنفش (UV) مورد بررسی قرار گرفت. نتایج نشان می‌‌دهد که نانوذرات SnO2  قادرند رنگ‌‌های آلی را در مدت زمانی کوتاه و با بازده بالا تخریب نمایند. همچنین، قابلیت بازیافت نانوذرات SnO2 در تخریب متیلن آبی مورد بررسی قرار گرفت و نتایج قابلیت بازیافت بالایی را برای نانوذرات SnO2 نشان دادند.

کلیدواژه‌ها


عنوان مقاله [English]

Photocatalytic Degradation of Organic Dyes Using Tin Oxide Nanoparticles Synthesized in Berry Leaf Extract in the Presence of Sunlight

نویسندگان [English]

  • H. R. Ghenaatian 1
  • M. Honarmand 2
  • Z. Zeraatkar Seyedabadi 2
  • M. Shakourian-Fard 2
1 Department of Physics, Jahrom University, Jahrom, Iran
2 Department of Chemical Engineering, Birjand University of Technology, Birjand, Iran
چکیده [English]

In this investigation, for the first time, berry leaf extract was used for green synthesis of tin oxide (SnO2) nanoparticles. In this method, the flavonoids in berry leaf extract are responsible for reduction of metal ions and their conversion to nanoparticles. The nanoparticles were synthesized in green conditions and no toxic or organic solvents were used during the synthesis of nanoparticles. After identifying the synthesized nanoparticles using X-Ray diffraction (XRD), their morphology was determined using transmission electron microscopy (TEM). Then, the photocatalytic activity of SnO2 nanoparticles for degradation of organic dyes including blue bromothymol, green bromocrozole and methylene blue was investigated using Ultraviolet–visible (UV) spectroscopy under direct sunlight and without the use of any toxic reducing agent. The results show that SnO2 nanoparticles are able to degrade organic dyes at high efficiency and short duration. The recyclability of SnO2 nanoparticles in degradation of methylene blue was also investigated, and the results showed a high recyclability for the SnO2 nanoparticles.

کلیدواژه‌ها [English]

  • SnO2 Nanoparticles
  • Organic dyes
  • Photocatalytic activity
  • Berry leaf extract
  1. 1. س. زمانی، ش. سالم، بررسی تأثیر استفاده هم زمان از نانولوله کربنی و اکسید گرافن در بهبود فعالیت کاتالیزوری نوری TiO2. نشریه علمی علوم و فناوری رنگ (1398)13، 370-313.
  2. M. M. Al Mogren, N. M. Ahmed, A. A. Hasanein, Molecular modeling and photovoltaic applications of porphyrin-based dyes: A review. J. Saudi Chem. Soc. 24(2020), 303-320.
  3. ج. مهرعلی پور، س. احمدی، ر. بهادری، ز. شهبازی، م. سمرقندی، مطالعه توانایی رادیکال سولفات و رادیکال هیدروکسیل فعال شده با مولکول ازن در تجزیه ماده رنگزای دی آزو اسید آبی 25 (AB25) از پساب‌های ساختگی. نشریه علمی علوم و فناوری رنگ. (1397)12، 216-207.
  4. J. O. Unuofin, Treasure from dross: Application of agroindustrial wastes-derived thermo-halotolerant laccases in the simultaneous bioscouring of denim fabric and decolorization of dye bath effluents. Ind. Crops. Prod. 147(2020), 112251-112253.
  5. U. Shanker, M. Rani, V. Jassal, Degradation of hazardous organic dyes in water by nanomaterials. Environ. Chem. Lett. 15(2017), 623-642.
  6. ا. غریبی، ن. زبرجدشیراز، م. مهدوی، م. جوادی. روش‌های کاهش آلودگی‌های ناشی از صنایع رنگ در محیط زیست. دومین همایش تخصصی مهندسی محیط زیست: دانشگاه تهران، 1387.
  7. M.A. Abdel-Fatah, Nanofiltration systems and applications in wastewater treatment: Review article. Ain Shams Eng. J. 9(2018), 3077-3092.
  8. P. Domercq, A. Praetorius, A.B.A. Boxall, Emission and fate modelling framework for engineered nanoparticles in urban aquatic systems at high spatial and temporal resolution. Environ. Sci. Nano. 5(2018), 533-543.
  9. ل. عدل نسب، ل. حیدری، س. اوسطی، آ. پیری صدیق، بررسی حذف رنگدانه‌های آلی از نمونه‌های محیطی با استفاده از تهیه نانوذرات مغناطیسی عامل‌دارشده با پورفیرین. نشریه علوم و فناوری رنگ. (1395)10، 116-107.
  10. M. M. Rashad, I. A. Ibrahim, I. Osama, A. E. Shalan, Distinction between SnO2 nanoparticles synthesized using co-precipitation and solvothermal methods for the photovoltaic efficiency of dye-sensitized solar cells. Bull. Mater. Sci. 37(2014), 903-909.
  11. G. W. Chu, Q. H. Zeng, Z. G. Shen, H. K. Zou, J. F. Chen, Preparation of SnO2 nanoparticles using a helical tube reactor via continuous hydrothermal route. Chem. Eng. J. 253(2014), 78-83.
  12. G. Zhang, M. Liu, Preparation of nanostructured tin oxide using a sol-gel process based on tin tetrachloride and ethylene glycol. J.. Mater. Sci. 34(1999), 3213-3219.
  13. J. H. Lee, S. J. Park, Preparation of Spherical SnO2 Powders by Ultrasonic Spray Pyrolysis. J. Am. Ceram. Soc. 76(1993), 777-780.
  14. M. Honarmand, M. Golmohammadi, A. Naeimi, Biosynthesis of tin oxide (SnO2) nanoparticles using jujube fruit for photocatalytic degradation of organic dyes. Adv. Powder. Technol. 30(2019), 1551-1557.
  15. H. E. Garrafa-Galvez, O. Nava, C. A. Soto-Robles, A. R. Vilchis-Nestor, A. Castro-Beltrán, P. A. Luque, Green synthesis of SnO2 nanoparticle using Lycopersicon esculentum peel extract. J. Mol. Struct. 1197(2019), 354-360.
  16. J. G. Zhao, Y. Q. Zhang, A novel estimation method of total flavonoids in edible medicinal mulberry leaves by ultrasound-assisted hydroalcohol-acid extraction and HPLC-DAD. J. Appl. Bot. Food Qual. 91(2018), 114-119.
  17. Y. Yu, H. Li, B. Zhang, J. Wang, X. Shi, J. Huang, et al., Nutritional and functional components of mulberry leaves from different varieties: Evaluation of their potential as food materials. Int. J. Food Prop. 21(2018), 1495-1507.
  18. 18. N. Srivastava, M. Mukhopadhyay, Biosynthesis of SnO2 Nanoparticles Using Bacterium Erwinia herbicola and Their Photocatalytic Activity for Degradation of Dyes. Eng. Chem. Res. 53(2014), 13971-13979.
  19. 19. S. Gowri, R. Gandhi, M. Sundrarajan, Green Synthesis of Tin Oxide Nanoparticles by Aloe vera: Structural, Optical and Antibacterial Properties. J. Nanoelectron. Optoe. 8 (2013), 240-249.
  20.  A. Diallo, E. Manikandan, V. Rajendran, M. Maaza, Physical & enhanced photocatalytic properties of green synthesized SnO2 nanoparticles via Aspalathus linearis. Alloys Compd. 681(2016), 561-570.
  21.  J. Osuntokun, D. Onwudiwe, E. E. Ebenso, Biosynthesis and Photocatalytic Properties of SnO2 Nanoparticles Prepared Using Aqueous Extract of Cauliflower. J. Clust. Sci. 28(2017), 1883-1896.
  22. J. Selvakumari, M. Ahila, M. Malligavathy, D. P. Padiyan, Structural, morphological, and optical properties of tin(IV) oxide nanoparticles synthesized using Camellia sinensis extract: a green approach. Int. J. Min. Met. Mater. 24(2017), 1043-1051.
  23. K. P. Vennila, A. Maruthapillai, D. Sundaramurthy, Biological activies of tin oxide nanoparticles synthesized using plant extract. World J. Pharm. Pharm. Sci. 3(2014), 382-388.
  24.  S. Haq, W. Rehman, M. Waseem, M. Shahid, K.H. Shah, M. Nawaz, Adsorption of Cd2+ ions on plant mediated SnO2 Mater. Res. Express. 3(2016), 105019.
  25.  J. Hu, Biosynthesis of SnO2 nanoparticles by Fig (Ficus carica) leaf extract for electrochemically determining Hg (II) in water samples. J. Electrochem. Sci. 10(2015), 10668-10676.
  26. L. Fu, Y. Zheng, Q. Ren, A. Wang, B. Deng, Green biosynthesis of SnO2 nanoparticles by plectranthus amboinicus leaf extract their photocatalytic activity toward rhodamine B degradation. Ovonic Res. 11(2015), 21-26.
  27. M. Kumar, A. Mehta, A. Mishra, J. Singh, M. Rawat, S. Basu, Biosynthesis of tin oxide nanoparticles using Psidium Guajava leave extract for photocatalytic dye degradation under sunlight. Lett. 215(2018), 121-124.
  28. G. Elango, S. M. Kumaran, S. S. Kumar, S. Muthuraja, S.M. Roopan, Green synthesis of SnO2 nanoparticles and its photocatalytic activity of phenolsulfonphthalein dye, Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 145 (2015), 176-180.
  29. K. Wongsaprom, R. A. Bornphotsawatkun, E. Swatsitang, Synthesis and characterization of tin oxide (SnO2) nanocrystalline powders by a simple modified sol–gel route. Appl. Phys.A-Mater. 114(2014), 373-379.
  30. Q. Qi, T. Zhang, L. Liu, X. Zheng, Synthesis and toluene sensing properties of SnO2 nanofibers. Sens. Actuators B Chem. 137 (2009), 471-475.
  31. S. H. Park, S. J. Kim, S. G. Seo, S. C. Jung, Assessment of Microwave/UV/O3 in the Photo-Catalytic Degradation of Bromothymol Blue in Aqueous Nano TiO2 Particles Dispersions. Nanoscale Res. Lett. 5(2010), 1627–1632.
  32. M. M. Haque, M. Muneer, TiO2-mediated photocatalytic degradation of a textile dye derivative, bromothymol blue, in aqueous suspensions. Dyes Pigm. 75(2007), 443-448.
  33. S. Fassi, I. Bousnoubra, T. Sehili, K. Djebbar, Degradation of ‘’Bromocresol Green’’ by direct UV photolysis, Acetone/UV and advanced oxidation processes (AOP’s) in homogeneous solution (H2O2/UV, S2O8/UV). Comparative study. IJESD. 3(2012), 732-743.
  34. C. W. Huang, M. C. Wu, Photocatalytic degradation of methylene blue by UV-assistant TiO2 and natural sericite composites. J. Chem. Technol. Biotechnol. 95(2020), 2715-2722.
  35. A. T. Le, S.Y. Pung, S. L. Chiam, N. A. H. B. N. Josoh, T. Y. Koay, J. S. Lee, et al., Photocatalytic performance of TiO2 particles in degradation of various organic dyes under visible and UV light irradiation. AIP Conference Proceedings. 2267 (2020), 200171-200178.
  36. H. A. Kiwaan, T. M. Atwee, E. A. Azab, A. A. El-Bindary, Photocatalytic degradation of organic dyes in the presence of nanostructured titanium dioxide. J. Mol. Struct. 1200(2020), 127115-127125.
  37. A. Bhattacharjee, M. Ahmaruzzaman, T. Sinha, A novel approach for the synthesis of SnO2 nanoparticles and its application as a catalyst in the reduction and photodegradation of organic compounds. Spectrochim. Acta A Mol. Biomol. Spectrosc. 136(2015), 751-760.

38. A. N. Ejhieh, M. Khorsandi, Photodecolorization of Eriochrome Black T using NiS–P zeolite as a heterogeneous catalyst. J. Hazard. Mater. 176(2010), 629-637.