بررسی کارایی حذف رنگ توسط ZnFeAl-LDH و مخلوط اکسیدهای فلزی مشتق شده از آن

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه شیمی، دانشکده علوم، دانشگاه زنجان، زنجان، ایران، صندوق پستی: 19781-17171

چکیده

در پژوهش حاضر هیدروکسید لایه‌ای دوگانه روی، آهن، آلومینیم (ZnFeAl-LDH) و مخلوط اکسیدهای فلزی (MMO) آن طبق روش هم‌رسوبی و کلسیناسیون LDH حاصله سنتز شد. مشخصه‌یابی نمونه‌ها سنتز شده توسط روش‌های XRD، SEM و FT-IR انجام و تاثیر کلسیناسیون بر روی قابلیت جذب سطحی رنگزای قرمز اسیدی 14 توسط نمونه‌های سنتز شده مورد بررسی قرار گرفت. در ادامه، از طراحی آزمایش تاگوچی به منظور بهینه‌سازی، مدلینگ و بررسی تاثیر مشخصه‌های عملیاتی شامل نوع جاذب، pH، غلظت اولیه رنگزا، میزان جاذب و زمان جذب استفاده گردید. نتایج حاصله نشان داد که قابلیت جذب به شکل قابل‌توجهی بعد از کلسیناسیون افزایش می‌یابد. ضریب هم‌بستگی 95.2% بیانگر انطباق خوب داده‌های تجربی با مدل پیشنهادی توسط روش تاگوچی بود. تحت شرایط بهینه ظرفیت جذب mg/g 1 و درصد حذف 99.7 % برای رنگزای قرمز اسیدی 14 به دست آمد. بررسی مدل‌های ایزوترم و سینتیک نشان دادند که فرآیند حذف از مدل ایزوترمی لانگمویر و مدل سینتیکی شبه درجه دوم پیروی می‌کنند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Adsorption of Organic Dye on ZnFeAl-LDH and Derived Mixed Metal Oxide

نویسندگان [English]

  • H. Daneshvar
  • M.S. Dorraji
  • A Salami
Department of Chemistry, Faculty of Science, University of Zanjan, P. O. Box: 17171-19781, Zanjan, Iran.
چکیده [English]

The ZnFeAl-LDH was synthesized via the well-known co-precipitation method. The obtained solid was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier transform infrared (FT-IR). Taguchi orthogonal design with five factors, namely adsorbent type and dosage, pH, dye concentration, and time was performed to optimize and model the dye removal efficiency and the percentage by LDH and derived MMO. The proposed model was in accordance with the experimental results with a correlation coefficient of 95.2% and 98.7% for removal efficiency and percentage, respectively. The desirability approach was adopted in order to maximize the adsorption capacity (q) and adsorption percentage (R %). Under optimum conditions, the maximum adsorption capacity of 151.48 mg/g and the removal percentage of 99.7% were obtained. Isotherm modeling and kinetic investigations showed that Langmuir and pseudo-second-order models describe both the adsorption equilibrium and kinetic behavior well.

کلیدواژه‌ها [English]

  • Taguchi method
  • optimization
  • Layered double hydroxide
  • Adsorption
  • Calcination
  1. M. N. Pahalagedara, M. Samaraweera, S. Dharmarathna, C. H. Kuo, L.R. Pahalagedara, J.A. Gascón, S.L. Suib, Removal of azo dyes: Intercalation into sonochemically synthesized nial layered double hydroxide. J. Phys. Chem. C. 118(2014), 17801–17809.
  2. ز. کریمی، ع. الله وردی، ف. اوشنی، بررسی حذف مواد رنگزا از پساب با استفاده از نانوجاذب های کامپوزیت آلومینا نشریه علمی مطالعات در دنیای رنگ. (1399)17، 59-41.
  3. X. Wang, P. Wu, Z. Huang, N. Zhu, J. Wu, P. Li, Z. Dang, Solar photocatalytic degradation of methylene blue by mixed metal oxide catalysts derived from ZnAlTi layered double hydroxides. Appl. Clay Sci. 95(2014), 95-103.
  4. S. Wu, K. San, O. Hui, K.N. Hui, One-Dimensional Core–Shell Architecture Composed of Silver Nanowire@ Hierarchical Nickel–Aluminum Layered Double Hydroxide Nanosheet as Advanced Electrode Materials for Pseudocapacitor. J. Phys. Chem. C 119 (2015) 23358–23365.
  5. C. Veschambres, M. Halma, E. Bourgeat-lami, L. Chazeau, F. Dalmas, V. Prevot, Layered double hydroxides : Efficient fillers for waterborne nanocomposite films. Appl. Clay Sci. 130(2016), 55-61.
  6. V. Rives, M. Arco, C. Martín, Layered double hydroxides as drug carriers and for controlled release of non-steroidal antiin flammatory drugs ( NSAIDs ): A review. J. Control. Release. 169(2013), 28–39.
  7. R. M. M. dos Santos, R. G. L. Gonçalves, V. R. L. Constantino, L. M. da Costa, L. H. M. da Silva, J. Tronto, F. G. Pinto, Removal of Acid Green 68:1 from aqueous solutions by calcined and uncalcined layered double hydroxides. Appl. Clay Sci. 80(2013), 189–195.
  8. F. Bruna, R. Celis, M. Real, J. Cornejo, Organo/LDH nanocomposite as an adsorbent of polycyclic aromatic hydrocarbons in water and soil-water systems. J. Hazard. Mater. 225–226(2012), 74–80
  9. G. Darmograi, B. Prelot, G. Layrac, D. Tichit, G. Martin-Gassin, F. Salles, J. Zajac, Study of Adsorption and Intercalation of orange-type dyes into mg-al layered double hydroxide. J. Phys. Chem. C. 119(2015), 23388–23397.
  10. C. Geng, T. Xu, Y. Li, Z. Chang, X. Sun, X. Lei, Effect of synthesis method on selective adsorption of thiosulfate by calcined MgAl-layered double hydroxides. Chem. Eng. J. 232(2013), 510–518.
  11. L. El Gaini, M. Lakraimi, E. Sebbar, A. Meghea, M. Bakasse, Removal of indigo carmine dye from water to Mg – Al – CO 3 -calcined layered double hydroxides. 161(2009), 627–632.
  12. ه. پوررادی، ک.قانی، م. محمدی، سنتز نانو ساختار هیدروکسید لایه‌ای دوگانه روی-آلومینیم و بررسی اثر آن بر بازدهی سلول خورشیدی پروسکایتی، نشریه علمی پژوهشی علوم و فناوری رنگ. 4 (1397)، 269-261.
  13. M. Zhang, Q. Yao, C. Lu, Z. Li, W. Wang, Layered double hydroxide-carbon dot composite: High-performance adsorbent for removal of anionic organic dye. ACS Appl. Mater. Interfaces. 6(2014) 20225–20233.
  14. N. Thi, K. Phuong, M. Beak, B. The, Y. Lee, Chemosphere adsorption and photodegradation kinetics of herbicide 2 , 4 , 5- trichlorophenoxyacetic acid with MgFeTi layered double hydroxides. Chemosphere. 146 (2016) 51–59.
  15. X. Yuan, Y. Wang, J. Wang, C. Zhou, Q. Tang, X. Rao, Calcined graphene/MgAl-layered double hydroxides for enhanced Cr(VI) removal. Chem. Eng. J. 221(2013), 204–213. Z. Yang, S. J, W. Gao, C. Zhang, L. Ren, W. W. Tjiu, Z. Zhang, J. Pan, T. Liu, Magnetic nanomaterial derived from graphene oxide/layered double hydroxide hybrid for efficient removal of methyl orange from aqueous solution. J. Colloid Interface Sci. 408(2013), 25–32.
  16. S. Lei, S. Wang, B. Gao, Y. Zhan, Q. Zhao, S. Jin, Y. Tang, Ultrathin dodecyl-sulfate-intercalated Mg-Al layered double hydroxide nanosheets with high adsorption capability for dye pollution.  J. Colloid Interface Sci. (2020), Doi: 10.1016/j.jcis.2020.05.050.
  17. J. Xie, T. Yamaguchi, and J. Oh, Synthesis of a mesoporous Mg–Al–mixed metal oxide with P123 template for effective removal of Congo red via aggregation-driven adsorption.  J. Solid State Chem. 293 (2021) 121758.
  18. Y.T. Chung, M.M. Ba-abbad, A.W. Mohammad, N. Hanis, H. Hairom, A. Benamor, NU SC, JMADE. (2015), Doi: 10.1016/j.matdes.2015.07.040.
  19. A. Kundu, B. Sengupta, M.A. Hashim, G. Redzwan, Taguchi optimisation approach for chromium removal in a rotating packed bed contractor. J. Taiwan Inst. Chem. Eng. 57(2015), 91–97.
  20. G. Barman, A. Kumar, P. Khare, Removal of Congo Red by Carbonized low-cost adsorbents : process parameter optimization using a taguchi experimental design. (2011) 4102–4108.
  21. S. Varala, A. Kumari, B. Dharanija, S.K. Bhargava, R.Parthasarathy, B. Satyavathi, Removal of thorium (IV) from aqueoussolutions by deoiled karanja seed cake : Optimization using Taguchi method , equilibrium , kinetic and thermodynamic studies. J. Environ, Chem. Eng. 4 (2016) 405–417.
  22. J. Zolgharnein, N. Asanjrani, M. Bagtash, G. Azimi, Spectrochimica Acta Part A : Molecular and Biomolecular Spectroscopy Multi-response optimization using Taguchi design and principle component analysis for removing binary mixture of alizarin red and alizarin yellow from aqueous solution by nano c -alumina, Spectrochim. ACTA PART A Mol. Biomol. Spectrosc. 126(2014), 291–300.
  23. F. Khodam, Z. Rezvani, A.R. Amani-ghadim, RSC Advances Fabrication of a novel ZnO / MMO / CNT nanohybrid derived from multi-cationic layered double hydroxide for photocatalytic degradation of azo dye under visible light. RSC Adv. 5(2015) 19675–19685
  24. F. Khodam, Z. Rezvani, A.R. Amani-Ghadim, Enhanced adsorption of Acid Red 14 by co-assembled LDH/MWCNTs nanohybrid: Optimization, kinetic and isotherm. J. Ind. Eng. Chem. 21(2015), 1286–1294.
  25. R. Lu, X. Xu, J. Chang, Y. Zhu, S. Xu, F. Zhang, Applied Catalysis B : Environmental Improvement of photocatalytic activity of TiO 2 nanoparticles on selectively reconstructed layered double hydroxide. Applied Catal. B, Environ. 111(2012), 389–396.
  26. Z. Rezvani, G.H. Sadeghi, E. Zorufi, Layered double hydroxides : A novel nano-sorbent for solidphase extraction. Anal. Chim. Acta 685 (2011) 212–219.
  27. H. Zaghouane-Boudiaf, M. Boutahala, L. Arab, Removal of methyl orange from aqueous solution by uncalcined and calcined MgNiAl layered double hydroxides (LDHs). Chem. Eng. J. 187(2012), 142–149.
  28. Y. Guo, Z. Zhu, Y. Qiu, J. Zhao, Enhanced Adsorption of Acid Brown 14 Dye on Calcined Mg/Fe Layered Double Hydroxide with Memory Effect. Chem. Eng. J. 219(2013), 69-77.
  29. J. Miller, J. C. Miller, Statistics and chemometrics for analytical chemistry. Pearson education, 2018.
  30. J. Zolgharnein, N. Asanjarani, T. Shariatmanesh, International Biodeterioration & Biodegradation Taguchi L 16 orthogonal array optimization for Cd ( II ) removal using Carpinus betulus tree leaves : Adsorption characterization. Int. Biodeterior. Biodegradation. 85(2013) 66–77.
  31. M. Zhu, Y. Li, M. Xie, H. Xin, Sorption of an anionic dye by uncalcined and calcined layered double hydroxides : a case study. J. Hazard. Mater. 120 (2005), 163–171.
  32. R.-R. Shan, L.-G. Yan, K. Yang, Y.-F. Hao, B. Du, Adsorption of Cd(II) by Mg-Al-CO3- and magnetic Fe3O4/Mg-Al-CO3-layered double hydroxides: Kinetic, isothermal, thermodynamic and mechanistic studies. J. Hazard. Mater. 299(2015), 42–49.
  33.  C. Duran, D. Ozdes, A. Gundogdu, H.B. Senturk, Acid Dyes Removal from textile wastewater using waste cotton activated carbon: Kinetic, isotherm, and thermodynamic studies. Prog. Color, Colorants Coat. 11(2018) 9-20.
  34. T. A. Khan, E. A. Khan, Applied Clay Science Removal of basic dyes from aqueous solution by adsorption onto binary iron-manganese oxide coated kaolinite : Non-linear isotherm and kinetics modeling, Appl. Clay Sci. (2015) 1–8.
  35. C. Kuo, C. Wu, J. Wu, Adsorption of direct dyes from aqueous solutions by carbon nanotubes : Determination of equilibrium , kinetics and thermodynamics parameters. J. Colloid Interface Sci. 327 (2008), 308–315.
  36. H. Bai, Q. Zhang, T. He, G. Zheng, G. Zhang, L. Zheng, S. Ma, Applied Clay Science Adsorption dynamics , diffusion and isotherm models of poly ( NIPAm / LMSH ) nanocomposite hydrogels for the removal of anionic dye Amaranth from an aqueous solution. Appl. Clay Sci. 124(2016), 157–166.
  37. F. Khodam, Z. Rezvani, A. R. Amani-Ghadim, Enhanced adsorption of Acid Red 14 by co-assembled LDH/MWCNTs nanohybrid: Optimization, kinetic and isotherm. J. Ind. Eng. Chem. 21(2015), 1286-1294.
  38. M. Arami, N. Yousefi Limaee, N. Mahmoodi, N. Salman Tabrizi, Equilibrium and kinetics studies for the adsorption of direct and acid dyes from aqueous solution by soy meal hull. J. Hazard. Mater. 135(2006), 171-179.
  39. N. Mahmoodi, O. Masrouri, A. M. Arabi, Synthesis of porous adsorbent using microwave assisted combustion method and dye removal.  J. Alloys. Compd. 602(2014), 210-220.