اصلاح ساختار نانولوله کربنی چند دیواره کربوکسیله شده با استفاده از دی‌اکسید تیتانیم برای جذب سطحی ماده رنگزای اندیگوکارمین از محیط آبی (بررسی ترمودینامیکی و سینتیکی)

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه شیمی، دانشکده علوم پایه، واحد ورامین- پیشوا، دانشگاه آزاد اسلامی، ورامین، ایران

چکیده

در این پژوهش، اثر نشاندن TiO2  روی نانولوله‌کربنی چنددیواره عامل‌دارشده با گروه کربوکسیل (FMWCNT) به روش دوپه کردن روی جذب سطحی ماده رنگزایاندیگو کارمین که یک ماده رنگزای اسیدی است، در محیط آبی مورد بررسی قرار گرفت. TiO2 روی سطح FMWCNT نشانده شد. صحت انجام کار با استفاده طیف‌‌سنجی زیر قرمز تبدیل فوریه، پراش پرتو ایکس و میکروسکوپ الکترونی مورد تایید قرار گرفت. آزمایش‌های جذب سطحی ماده رنگزا با استفاده از یک فرآیند ناپیوسته انجام شد. اثر زمان تماس، pH ، غلظت ماده رنگزا و دما در جذب سطحی ماده رنگزای اندیگو کارمین روی جاذب اصلاح ساختار شده (FMWCNT/TiO2)  و جاذب FMWCNT مورد بررسی قرار گرفت. مدل‌های سینتیکی شبه‌ درجهاول، شبه درجهدوم و نفوذ درون ذره‌ای برای توصیف سینتیک جذب سطحی مورد استفاده قرار گرفتند. علاوه‌‌بر‌این، ایزوترم‌های لانگمویر، فروندلیچ، تمکین و دوبینین- رادوشکویچ برای توصیف جذب سطحی تعادلی به کار رفتند. داده‌های به دست آمده با استفاده از رگراسیون خطی مورد برازش قرار گرفت. نتایج نشان داد که  pHمناسب برای هر دو جاذب برابر 3 است. زمان تعادل برای هر دو جاذب 90 دقیقه تعیین شد. ظرفیت جذب سطحی با نشاندن TiO2  افزایش یافت. مقدار جذب سطحی با افزایش غلظت ماده رنگزا افزایش می‌یابد. مدل سینتیک شبه درجه‌ دو بهترین تطابق را با داده‌های تجربی در هر دو جاذب دارد. داده‌های جذب سطحی تعادلی ماده رنگزایاندیگو کارمین روی هر دو جاذب، بیشترین تطابق را با ایزوترم لانگمویر در سه دمای 25، 35 و 45 درجه سانتی‌گراد داشتند. مطالعات ترمودینامیکی فرآیند جذب سطحی روی هر دو جاذب نشان داد که فرآیند جذب سطحی گرمازا بوده و جذب سطحی از نوع شیمیایی است.

کلیدواژه‌ها

dor 20.1001.1.17358779.1400.15.1.2.7

موضوعات


عنوان مقاله [English]

The Modification of Carboxylated Multi-Walled Carbon Nanotube Using Titanium Dioxide for Surface Adsorption of Indigo Carmine Dye From Aqueous Environment (Thermodynamics and Kinetics Study)

نویسندگان [English]

  • Sh. Eyvazi
  • M. Shabani
  • A. Moghimi
Department of Chemistry, Faculty of Basic Science, Varmin-Pishva branch, Islamic Azad University. Varamin, Iran
چکیده [English]

In this study, the doping effect of TiO2 on carboxylated multi-walled carbon nanotube (FMWCNT) on adsorption of Indigo carmine dye, an acidic dye, form aqueous enviroment has been Investigated. TiO2 was doped on FMWCNT surface and it was checked by fourier-transform infrared spectroscopy (FTIR), x-ray diffraction (XRD) and scanning electron microscope (SEM). The dye adsorption experiments were carried out by using a batch procedure. The effects of contact time, pH, dye concentration, adsorbent dose and temperature on adsorption of indigo carmine by TiO2 doped and undoped adsorbents (FMWCNT /TiO2 and FMWCNT) were evaluated. Pseudo first order, pseudo second order and intra-particle kinetic models were used to describe adsorption kinetics. Furthermore, Langmuir, Freundlich, Temkin and Dubinin-Radushkevich isotherms were used to describe equilibrium adsorption of the indigo carmine dye on adsorbents. The obtained data were then analyzed using linear regression method. Experimental results have shown that acidic pH (3.0), favored the adsorption for both adsorbents. The dye adsorption equilibrium was attained after 90 minute of contact time. The capacity of adsorption of indigo carmine increases with doping of TiO2 on FMWCNT. Pseudo second order kinetic model is best fitted with experimental data for both adsorbents. The equilibrium data of dye adsorption on both adsorbents are best fitted with Langmuir isotherm at 25, 35 and 45 ºC. Thermodynamic study of dye adsorption on FMWCNT and Fmwcnt /TiO2 adsorbents showed that the adsorption process is exothermic and chemisorption.

کلیدواژه‌ها [English]

  • Carboxylated multi-walled nanotube
  • TiO2 doped carboxylated multi-walled nanotube
  • Adsorption Isotherm
  • adsorption kinetics
  • Indigo carmine dye
N. Barka, A. Assabbane, A. Nounah, Y. A. Ichou, Photocatalytic degradation of indigo carmine in aqueous solution by TiO2- coated non-woven fibers. J. Hazard. Mater. 152(2008), 1054–1059.
2. I. Othman, R. M. Mohamed, F. M. Ibrahem, Study of photocatalytic oxidation of indigo carmine dye on Mn-supported TiO2. J. Photochem. Photobiol. A. 189(2007), 80–85.
3. M. A. Behnajady, N. Modirshhla, N. Daneshvar, M. Rabbani, Photocatalytic degradation of an azo dye in a tubular continuous-flow photoreactor with immobilized TiO2 on glass plates. Chem. Eng. J. 127(2007), 167–176.
4. V. K. Gupta, Suhas, Application of low-cost adsorbents for dye removal, A review. J. Environ. Manage. 90(2009), 2313-2342.
5. M. A. Rauf, S. B. Bukallah, A. Hamadi, A. Sulaiman, F. Hammadi, The effect of operational parameters on the photoinduced decoloration of dyes using a hybrid catalyst V2O5//TiO2, Chem. Eng. J. 12(2007), 167–172.
6. س.ح. مرتضوی میلانی، ع.ا. میلانی، ر. سلیمی، ح سامعی، مطالعه روش‌های تخریب مواد رنگزای آلی توسط نانو ذرات فوتوکاتالیستی با بهره‌گیری از خاصیت پلاسمونیک. نشریه علمی مطالعات در دنیای رنگ. (1398)9، 8-1.
7. A. Seidmohammadi, Gh. Asgari, A. Dargahi, M. Leili, Y. Vaziri, B. Hayati, A. A. Shekarchi, A. Mobarakian A Bagheri, S. B. Nazar khanghah, A. Keshavarzpour, A comparative study for the removal of methylene blue dye from aqueous solution by novel activated carbon based adsorbents, Prog. Color Colorants Coat. 12(2019), 133-144.
8. R. Salehi, F. Dadashian, E. Ekrami, acid dyes removal from textile wastewater using waste cotton activated carbon: kinetic, isotherm, and thermodynamic studies. Prog. Color Colorants Coat. 11(2018), 9-20.
9. A. Hamidi, K. Seifpanahi-Shabani, M. Karamoozian, Basic dyes removal by natural Salvadora Persica adsorbent. Prog. Color Colorants Coat. 10(2017), 115-128.
10. P. Luo, Y. Zhao, B. Zhang, J. Liu, Y. Yang, J. Liu, Study on the adsorption of neutral red from aqueous solution onto halloysite nanotubes. Water. Res. 44(2010), 1489-1497.
11. T. Ashish Kumar Mishra, S. Arockiadoss, Ramaprabhu, Study of removal of azo dye by functionalized multi walled carbon nanotubes. Chem. Eng. J. 162(2010), 1026–1034.
12. G. D. Sheng, D. D. Shao, X. M. Ren, X. Q. Wang, J. X. Li, Y. X. Chen, X. K. Wang, Kinetics and thermodynamics of adsorption of ionizable aromatic compounds from aqueous solutions by as-prepared and oxidized multi-walled carbon nanotubes. J. Hazard. Mater. 178(2010), 505–516.
13. V. K. Gupta,  Shilpi Agarwal, Tawfik, A. Saleh, Chromium removal by combining the magnetic properties of iron oxide with adsorption properties of carbon nanotubes. Water. Res.  45(2011), 2207-2212.
14. S. Nathan, Lawrence, J. Wang, Chemical adsorption of phenothiazine dyes onto carbon nanotubes: toward the low potential detection of NADH. Electrochem. Commun. 8(2006), 71-76.
15. Y. Wang, Z. Iqbal, S. Mitra, Microwave-induced rapid chemical functionalization of single-walled carbon nanotubes. Carbon. 43(2005), 1015–1020.
16. R. H. Bradley, K. Cassity, R. Andrews, M. Meier, S. Osbeck, A. Andreu, C. Johnston, A. Crossley, Surface studies of hydroxylated multi-wall carbon nanotubes. Appl. Surf. Sci. 258(2012), 4835–4843.
17. R. Kumar, M. O. Ansari, M. A. Barakat, Adsorption of brilliant green by surfactant doped polyaniline/MWCNTs composite: Evaluation of the kinetic, thermodynamic, and isotherm. Ind. Eng. Chem. Res. 53(2014), 7167-7175.
18. C. Hsinwu, Studies of the equilibrium and thermodynamics of the adsorption of Cu2+ onto As-produced and modified carbon nanotubes. J. Colloid Interface Sci. 311 (2007), 338-346.
19. M. R. Hoffmann, S. T. Martin, W. Choi, D. W. Bahnemann, Environmental applications of semiconductor photocatalysis. Chem. Rev. 95(1995), 69-96.
20. Y. Xie, H. Qian, Y. Zhong, H. Guo, Y. Hu, Facile low-temperature synthesis of carbon nanotube/TiO2 nanohybrids with enhanced visible-light-driven photocatalytic activity. Int. J. Photoenergy. (2012), 1-6.
21. C. Y. Kuo, C. H. Wu, J. Y. Wu, Adsorption of direct dyes from aqueous solutions by carbon nanotubes: Determination of equilibrium, kinetics and thermodynamics parameters. J. Colloid Interface Sci. 327(2008), 308–315.
22. C. H. Wu, Adsorption of reactive dye onto carbon nanotubes: Equilibrium, kinetics and thermodynamics, J. Hazard. Mater. 144(2007), 93–100.
23. M. Tavakoli, F. Safa, N. Abedinzaptiondeh, Binary nanocomposite of Fe3O4/MWCNTs for adsorption of Reactive Violet 2: Taguchi design, kinetics and equilibrium isotherms, Fullerenes. 27(2019), 305-316.
24. W. KonickiI. Pełech,Removing Cationic Dye from Aqueous Solutions Using as-grown and Modified Multi-Walled Carbon Nanotubes. Pol. J. Environ. Stud. 28(2019), 717–727.
25. س. زمانی، ش. سالم، بررسی تاثیر استفاده هم­زمان از نانولوله کربنی و اکسید گرافن در بهبود کاتالیزوری نوری TiO2، نشریه علمی علوم و فناوری رنگ. (1398)13، 317-330.
26. S. K. Milonjic, A. L. Ruvarac, M. V. Susic, The heat of immersion of natural magnetite in aqueous solutions. Thermochim. Acta, 11(1975), 261-266.
27. A.  A. Ashkarran, M. Fakhari, H. Hamidinezhad, H. Haddadi, M. R. Nourani, TiO2   nanoparticles immobilized on carbon nanotubes for enhanced visible-light photo-induced activity. J. Mater. Res. Technol. 4(2015), 126-132.
28. T. Theivasanthi, M. Alagar, Titanium dioxide (TiO2) Nanoparticles - XRD Analyses: An Insight. Chemical physics, arxiv Materials science, (2013), 1307.1091vl.
29. I. Langmuir, The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 40(1918), 1361–1403.
30. T. W. Webber, R. K. Chakkravorti, Pore and solid diffusion models for fixed-bed absorbers. AlChE J. 20(1974), 228–238.
31. H. M. F. Freundlich, over the adsorption in solution. J. Phys. Chem. 57(1906), 385–471.
32. F. Haghseresht, G. Lu, Adsorption characteristics of phenolic compounds onto coal-reject-derived adsorbents. Energy Fuels, 12(1998), 1100–1107.
33. M. I. Tempkin, V. Pyzhev, Kinetics of ammonia synthesis on promoted iron catalyst. Acta Phys. Chim. USSR. 12(1940), 327–356.
34. M. M. Dubinin, L. V. Radushkevich, The equation of the characteristic curve of the activated charcoal. Proc. Acad. Sci. USSR Phys. Chem. Sect. 55(1974), 331–337.
35. S. Lagergren, K. S. Vetenskapsakad, About the theory of so-called adsorption of soluble substances. Handl. 24(1898), 1–39.
36. Y. S. Ho, G. McKey, Pseudo second order model for sorption processes. Process Biochem. 34(1999), 451-465.
37. W. J. Weber, J. C. Morris, Kinetics of adsorption on carbon from solution. J. Saint. Eng. Div. Am. Soc. Civ. Eng. 89(1963), 31-60.
38. T. Bohli, N. Fiol, I. Villaescusa, A. Ouederni, Adsorption on activated carbon from olive stones: Kinetics and equilibrium of phenol removal from aqueous solution. J. Chem. Eng. Process Technol. 4(2013), 1-5