سنتز سبز نانوذرات SnO2بر روی بنتونیت و بررسی فعالیت کاتالیزوری نوری آن در تخریب اریوکروم بلک T

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه مهندسی شیمی، دانشگاه صنعتی بیرجند، بیرجند، ایران

چکیده

در این تحقیق، از عصاره آویشن برای سنتز سبز نانوذرات اکسید قلع بر روی بستر بنتونیت (SnO2 NPs@bent) استفاده شد. عصاره آبی آویشن به عنوان یک عامل کاهنده موثر و پایدار کننده سبز در این روش سنتزی ایفای نقش کرد.  SnO2 NPs@bent توسط روش‌‌های مختلف همچون طیف‌سنجیفوریهزیرقرمز (FTIR)،پراش پرتو ایکس (XRD)، میکروسکوپ الکترونی روبشی (SEM) و طیف‌سنجی پراش انرژی پرتو ایکس (EDS) مورد شناسایی قرار گرفت. پس از اطمینان از سنتز موفقیت‌آمیز SnO2 NPs@bent، فعالیت کاتالیزوری نوری آن برای تخریب ماده رنگزای آلی اریوکروم بلک T در معرض نور مستقیم خورشید مورد بررسی قرار گرفت. این کاتالیزور جدید، فعالیت کاتالیزوری خوبی از خود به نمایش گذاشت، به طوری که پیک مشخصه اریوکروم بلک T در طیف UVبا گذشت زمان کاهش یافت تا اینکه پس از گذشت 5 ساعت به‌طور کامل ناپدید شد.در این تحقیق نه در مرحله سنتز کاتالیزور و نه در مرحله تخریب ماده رنگزای آلی از هیچ ماده شیمیایی و حلال سمی استفاده نشد و تمام شرایط سبز و ایمن بود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Green Synthesis of SnO2 Nanoparticles on Bentonite and Study of Its Photocatalytic Activity for Degradation of Eriochrome Black T

نویسندگان [English]

  • M. Honarmand
  • M. Golmohammadi
  • J. Hafezi Bakhtiari
Department of Chemical Engineering, Birjand University of Technology, Birjand, Iran
چکیده [English]

In this study, thyme extract was used for green synthesis of tin oxide nanoparticles on bentonite (SnO2 NPs@bent). The aqueous extract of thyme was applied as an effective reducing agent and a green stabilizer in this synthetic approach. SnO2 NPs@bent was characterized by various methods such as infrared Fourier spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM) and X-ray energy diffraction spectroscopy (EDS). After the assurance of the successful synthesis of tin oxide nanoparticles on bentonite, its photocatalytic activity was investigated for the degradation of the organic dye of eriochrome black T, under direct sunlight. The new catalyst exhibited a good catalytic activity, so that the related peak to the eriochrome black T in the UV spectrum decreased over time, until it disappeared completely after 5 hours. In this study, no chemicals or toxic solvents were used, neither in stage of the catalyst production nor in stage of the organic dye degradation, and all conditions were green and safe.

کلیدواژه‌ها [English]

  • SnO2 Nanoparticles
  • Bentonite
  • Thyme
  • Organic dye
  1. M. A. Hassaan, A. E. Nemr, Health and environmental impacts of dyes: mini review. Am. J. Environ. Sci. Engin. 1(2017), 64-67.
  2. A. Nezamzadeh-Ejhieh, M. Khorsandi, Heterogeneous photodecolorization of Eriochrome Black T using Ni/P zeolite catalyst. Desalination. 262(2010), 79-85.
  3. ا. وکیلی تجره، ح. گنجی‌دوست، ب. آیتی، حذف کاتالیزوری نوری ماده رنگزای آزویی اسید قرمز 14 از آب به‌وسیله نانوکامپوزیت مغناطیسی TiO2/Fe3O4/CNT. نشریهعلمیعلوموفناوریرنگ. 13(1398)، 75-87.
  4. ف. آریانسب، ش. مظفری، س.ف. هادی، رنگبری مواد رنگزای آنیونی از محلول‌های آبی با استفاده از نانوذرات مغناطیسی پوشش‌داده شده با نشاسته عاملدارشده با دی‌تیوکاربامات. نشریهعلمیعلوموفناوریرنگ. 12(1397)، 57-72.
  5. U. Shanker, M. Rani, V. Jassal, Degradation of hazardous organic dyes in water by nanomaterials. Environ. Chem. Lett. 15(2017), 623-642.
  6. S. Zohoori, L. Karimi, A. Nazari, Photocatalytic self-cleaning synergism optimization of cotton fabric using nano SrTiO3 and nano TiO2. Fibre. Text. East. Eur. 22(2014), 91-95.
  7. S. Zohoori, L. Karimi, Effect of nano SrTiO3 supporting nano tiO2 on self-cleaning of cotton fabric. Fiber. Polym. 14(2013), 996-1000.
  8. S. J. Derakhshan, L. Karimi, S. Zohoori, A. Davodiroknabadi, L. Lessani, Antibacterial and self-cleaning properties of cotton fabric treated with TiO2/Pt. Indian J. Fiber Text. Res. 43(2018), 344-351.
  9. X. Zhoua, X. Zhanga, B. Lia, R. Lia, L. Gaob, S. Zhangb, M. Zhangb, J. Mub, X. Zhang, CdS/CdSe nanoparticles co-deposited SnO2 (TiO2) spherical structure film for photoelectrochemical application. Mater. Lett. 239(2019), 59-62.
  10. T. T. Bhosale, H. M. Shinde, N. L. Gavade, S. B. Babar, V. V. Gawade, S. R. Sabale, R. J. Kamble, B. S. Shirke, K. M. Garadkar, Biosynthesis of SnO2 nanoparticles by aqueous leaf extract of Calotropis gigantea for photocatalytic applications. J. Mater. Sci. Mater. Electron. 29(2018), 6826–6834.
  11. L. A. Patil, M. D. Shinde, A. R.Bari, V. V. Deo, Novel trapping system for size wise sorting of SnO2 nanoparticles synthesized from pyrolysis of ultrasonically atomized spray for gas sensing. Sens. Act. B: Chem. 143(2009), 316-324
  12. G. E. Patil, D. D. Kajale, V. B Gaikwad, G. H. Jain. Preparation and characterization of SnO2 nanoparticles by hydrothermal route. Inter. Nano Lett. 17(2012), 2-5.
  13. B. S. Thabethe, G.F. Malgas, D. E.Motaung, T. Malwela, C. J. Arendse, Self-Catalytic growth of tin oxide nanowires by chemical vapor deposition process. J. Nanomater. 2013(2013), 1-7.
  14. F. Gu, S. F. Wang, M. K. Lu, G. J. Zhou, D. Xu, D. R. Yuan, Photoluminescence properties of SnO2 nanoparticles synthesized by sol-gel method. J. Phys. Chem. B. 108(2004), 8119-8123.
  15. F. Gu, S. F. Wang, M. K. Lu, G. J. Zhou, D. Xu, D. R. Yuan, Photoluminescence properties of SnO2 nanoparticles synthesized by sol-gel method. J. Phys. Chem. B.  108(2004), 8119-8123.
  16. J. Zhu, Z. Lu, S. T. Aruna, D. Aurbach, A. Gedanken, Sonochemical Synthesis of SnO2 Nanoparticles and Their Preliminary Study as Li Insertion Electrodes022 "">Sonochemical synthesis of SnO2 nanoparticles and their preliminary study as Li insertion electrodes. Chem. Mater. 12(2000), 2557-2566.
  17. Y. Wang, J. Tian, C. Fei, L. Lv, X. Liu, Z. Zhao, G. Cao, Microwave-assisted synthesis of SnO2 nanosheets photoanodes for dye-sensitized solar cells. J. Phys. Chem. C. 118(2014), 25931-25938. 
  18. J. Lee, S. Park, Preparation of spherical SnO2 powders by ultrasonic spray pyrolysis. J. Am. Cer. Soc. 76(1993), 777-780.
  19. F. K. Alsammarraieac, W. Wang, P. Zhoub, A. Mustapha and M. Lin, Green synthesis of silver nanoparticles using turmeric extracts and investigation of their antibacterial activities. Coll. Surf. B: Biointer. 171(2018), 398-405.
  20. H. Veisi, S. Azizi, P. Mohammadi, Green synthesis of the silver nanoparticles mediated by Thymbra spicata extract and its application as a heterogeneous and recyclable nanocatalyst for catalytic reduction of a variety of dyes in water. J. Clean. Prod. 170(2018), 1536-1543.
  21. A. Ebrahiminezhad, A. Zare‑Hoseinabadi, A. K. Sarmah, S. Taghizadeh, Y. Ghasemi, A. Berenjian, Plant-Mediated Synthesis and Applications of Iron Nanoparticles. Mol. Biotech. 60(2018), 154-168.
  22. M. Ghanbari, M. Bazarganipour, M. Salavati-Niasari, Photodegradation and removal of organic dyes using cui nanostructures, green synthesis and characterization. Sep. Pur. Tech. 173(2017), 27-36.
  23. G. Elango, S. M. Kumaran, S. S. Kumar, S. Muthuraja, S. M. Roopan, Green synthesis of SnO2 nanoparticles and its photocatalytic activity of phenolsulfonphthalein dye, Spectrochim. Acta-Part A Mol. Biomol. Spectrosc. 145(2015), 176-180.
  24. J. C. Selvakumari, M. Ahila, M. Malligavathy, D. P. Padiyan, Structural, morphological, and optical properties of tin(IV) oxide nanoparticles synthesized using Camellia sinensis extract: a green approach, Int. J. Miner. Metall. Mater. 24(2017), 1043-1051.
  25. A. Diallo, E. Manikandan, V. Rajendran, M. Maaza, Physical & enhanced photocatalytic properties of green synthesized SnO2 nanoparticles via Aspalathus linearis, J. Alloys Compd. 681(2016), 561-570.
  26. M. Kumar, A. Mehta, A. Mishra, J. Singh, M. Rawat, S. Basu, Biosynthesis of tin oxide nanoparticles using Psidium Guajava leave extract for photocatalytic dye degradation under sunlight. Mater. Lett. 215(2018), 121-124.
  27. M. Honarmand, M. Golmohammadi, A. Naeimi, Biosynthesis of tin oxide (SnO2) nanoparticles using jujube fruit for photocatalytic degradation of organic dyes. Adv. Powder Technol. 30(2019), 1551-1557.
  28. R. Iseppi, C. Sabia, S. Niederhausern, F. Pellati, S. Benvenuti, R. Tardugno, M. Bondi, P. Messi, Antibacterial activity of Rosmarinus officinalis L.and Thymus vulgaris L. essential oils and theircombination against food-borne pathogens andspoilage bacteria in ready-to-eat vegetables. Natural Prod. Res. 33(2018), 3568-3572.
  29. B. Szilvássy, G. Rak, S. Sárosi, I. Novák, Z. Pluhár, L. Abrankó, Polyphenols in the Aqueous Extracts of Garden Thyme (Thymus vulgaris) Chemotypes Cultivated in Hungary. Nat Prod Commun. 8(2013), 605-608.
  30. M. Nasrollahzadeh, S. M. Sajadi, A. Rostami-Vartooni, S. M. Hussin, Green synthesis of CuO nanoparticles using aqueous extract of Thymus vulgaris L. leaves and their catalytic performance for N-arylation of indoles and amines. J. Colloid Interface Sci. 466(2016), 113-119.
  31. L. Zhirong, M. Azhar Uddin, S. Zhanxue, FT-IR and XRD analysis of natural Na-bentonite and Cu(II)-loaded Na-bentonite. Spectrochim. Acta-Part A Mol. Biomol. Spectrosc. 79(2011), 1013-1016.
  32. L. Yan, J. W. Stucki, Effects of Structural Fe Oxidation State on the Coupling of Interlayer Water and Structural Si-O Stretching Vibrations in Montmorillonite. Langmuir. 15(1999), 4648-4657.
  33. A. Bhattacharjee, M. Ahmaruzzaman, T. Sinha, A novel approach for the synthesis of SnO2 nanoparticles and its application as a catalyst in the reduction and photodegradation of organic compounds. Spectrochim. Acta, Part A. 136(2015), 751-760.
  34. J. Y. Gong, S. R. Guo, H. S. Qian, W. H. Xu, S. H. Yu, A general approach for synthesis of a family of functional inorganic nanotubes using highly active carbonaceous nanofibres as templates. J. Mater. Chem. 19(2009), 1037-1042.
  35. S. K. Kansal, S. Sood, A. Umar, S. K. Mehta, Photocatalytic degradation of Eriochrome Black T dye using well-crystalline anatase TiO2 nanoparticles. J. Alloy. Compd. 581(2013), 392-397.
  36. M. Karimi-Shamsabadi, M. Behpour, A. Kazemi Babaheidari, Z. Saberi, Efficiently enhancing photocatalytic activity of NiO-ZnO doped onto nanozeoliteX by synergistic effects of p-n heterojunction, supporting and zeolite nanoparticles in photo-degradation of Eriochrome Black T and Methyl Orange. J. Photochem. Photobiol. A. Chem. 346(2017), 133-143.
  37. A. Nezamzadeh Ejhieh, M. Khorsandi, Photodecolorization of Eriochrome Black T using NiS–P zeolite as a heterogeneous catalyst. J. Hazard. Mater. 176(2010), 629-637.
  38. S. Zinatloo-Ajabshir, M. S. Morassaei, M. Salavati-Niasari, Facile fabrication of Dy2Sn2O7-SnO2 nanocomposites as an effective photocatalyst for degradation and removal of organic contaminants. J. Coll. Inter. Sci. 497(2017), 298-308.
  39. S. Zinatloo-Ajabshir, M. Salavati-Niasari, Photo-catalytic degradation of erythrosine and eriochrome black T dyes using Nd2Zr2O7 nanostructures prepared by a modified Pechini approach. Sep. Purif. Technol. 179(2017), 77-85.
  40. I. Kazeminezhad, A. Sadollahkhani, Photocatalytic degradation of Eriochrome black-T dye using ZnO nanoparticles. Mater.Lett. 120(2014), 267-270.
  41. S. Zinatloo‑Ajabshir, S, Mortazavi‑Derazkola, M. Salavati‑Niasari, Schiff-base hydrothermal synthesis and characterization of Nd2O3 nanostructures for effective photocatalytic degradation of eriochrome black T dye as water contaminant. J. Mater. Sci. Mater. Electron. 28(2017), 17849-17859.