مطالعات ایزوترم، سینتیک و ترمودینامیک حذف ماده رنگزای اسید نارنجی 7 با استفاده از پر مرغ وکربن آن

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی شیمی، موسسه آموزش عالی غیر انتفاعی جامی، اصفهان، ایران

2 موسسه آموزش عالی غیرانتفاعی دانش پژوهان پیشرو، اصفهان، ایران

3 مهندسی شیمی، موسسه آموزش عالی غیرانتفاعی جامی، اصفهان، ایران

چکیده

در تحقیق حاضر، حذف ماده رنگزای اسید نارنجی 7 توسط پر مرغ و کربن حاصل از آن به عنوان جاذب بررسی شد. اثر عوامل مختلفی مانند pH، دما، غلظت اولیه ماده رنگزا، مقدار جاذب و زمان تماس مورد بررسی قرار گرفت. نتایج نشان داد که بیشینه مقدار حذف ماده رنگزا در pH برابر با 3، دمای محیط، غلظت مقدار 20 میلی‌گرم بر لیتر و زمان ماند 90 دقیقه با استفاده از 30 میلی گرم بر لیتر جاذب به دست آمد. حداکثر درصد حذف ماده رنگزا برای جاذب پر مرغ و کربن حاصل از آن به ترتیب 89.37 و 96.41 % و بیشینه ظرفیت جذب برابر با 134.23 و 157.11میلی‌گرم/گرم محاسبه شد. نتایج آزمایش‌ها به خوبی با مدل ایزوترم فرندلیچ با مقادیر 0.969 و 0.966 به ترتیب برای پرمرغ و کربن حاصل از آن هم‌خوانی دارد. همچنین حذف اسید نارنجی 7 از رابطه سینتیک شبه مرتبه دوم پیروی می‌کند و فرآیند خودبه­خودی است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Studies of Isotherm, Kinetics and Thermodynamics of Acid Orange 7 Dye Removal Using Hen Feather and its Carbon

نویسندگان [English]

  • M. Bagheri 1 2
  • H. Nazarpour Najafabadi 3
1 Department of Chemical Engineering, Jami Institute of Technology, Department of Chemical Engineering, Daneshpajoohan Institute of higher education, Isfahan, Iran
2
3 Department of Chemical Engineering, Jami Institute of Technology, Isfahan, Iran
چکیده [English]

In this research, acid orange7 dye removal is investigated by using hen feather and its carbon as adsorbents. The effect of different parameters such as pH, temperature, initial concentration of dye adsorption dosage and contact time was studied. The results illustrated that the maximum amount of dye removal could be obtained under pH of 3, ambient temperature, dye concentration of 20 mg/L and retention time of 90 min using 30 mg/L of adsorbent. The maximum removal percentages and maximum adsorption capacity were 89.37, 96.41% and 134.23 mg/g, 157.11mg/g, respectively for hen feather and its carbon. The experimental results have been fitted well by the Freundlich isotherm model with R2=0.969 and 0.966 for hen feather and its carbon respectively.Also acid orange7 dye removal follows the pseudo second-order kinetic equation and it's a spontaneous process. 

کلیدواژه‌ها [English]

  • Acid orange 7 dye
  • Adsorption
  • Hen feather
  • Isotherm
  • Kinetics
  • Thermodynamics
  1. پ. کاظمی، ش. سالم، حذف عامل رنگزا از پساب به کمک فوتوکاتالیزور آناتاز تثبیت شده بر پایه متا کالوئن. نشریه علمی علوم و فناوری رنگ. (۱۳۹۷)۱۲، ۲۸۱-۲۹۲.
  2. M. B. Alqaragully, Removal of textile dyes (maxilon blue, and methyl orange) by date stones activated carbon. IJARCS. 1(2014), 48-59.
  3. م. سادات میری، س. ع. حسن زاده تبریزی، ع. صفار تلوری، جذب ماده رنگزای متیل نارجی با استفاده از نانو کامپوزیت اکسید روی- اکسید منگنز بر پایه آلومینای فعال شده. نشریه علمی علوم و فناوری رنگ. (۱۳۹۶)۱۱، 255-245.
  4. S. P. Kim, M. Y. Choi, H. C. Choi, Characterization and photocatalytic performance of SnO2–CNT nanocomposites. Appl. Surf. Sci. 357(2015), 302–308.
  5. J. H. Sun, S. H. Shi, Y. F. Lee, S. P. Sun, Fenton oxidative decolourisation of the azo dye Direct Blue 15 in aqueous solution. Chem. Eng. J. 155(2009), 680 – 683.
  6. L. A. V. de Luna, T. H. G. da Silva, R. F. P. Nogueira, F. Kummrow, G. A. Umbuzeiro, Aquatic toxicity of dyes before and after photo – Fenton Treatment. J. Hazard. Mater. 276(2014). 332–338.
  7. A. I. Adejumoke, A. Folahan, A, Adekolab, A.Gabriel, OlatunjibAdsorption of Rhodamine B Dye from Aqueous Solution on Irvingia gabonensis Biomass: Kinetics and Thermodynamics Studies. S. Afr. J. Chem. 68(2015), 115-125.
  8. W. Ballo, A. Essadki, B. Gourich, A. Dassaa, H. Chenik Mو Azzi; Electrocoagulation/electroflotation of reactive, disperse and mixture dyes in an external-loop airlift reactor. J. Hazard. Mater. 184(2010), 710-716.
  9. C. Cai, H, Zhang, X. Zhong L. Hou, Ultrasound enhaced heterogeneous activation of proxymonossulfate by a bimetallic Fe-Co/SBA-15 catalyste for the degradadation of Orange II in water. J. Hazard. Mater. 283(2015), 70-79.
  10. D. Balarak, F. Pirdadeh, Y. Mahdavi, Biosorption of acid red 88 dyes using dried Lemna minor biomass. J. Sci. Technol. Environ. Inform. 1(2015), 81–90.
  11. G. Crini, Kinetic and Equilibrium Studies on the removal of Cationic Dyes from Aqueous Solution Adsorption onto a Cyclodextrin Polymer. Dyes. Pigm. 77 (2008), 415-26.
  12. R. Ansari, p. Hossainzadeh, Application of spent tea leaves as an efficient low cost biosorbent for removal of anionic surfactants from aqueous solutions. Eur. Chem. Bull. 2(2013), 283-289.
  13. F. B. A. Rahman, M. Akter, Removal of dyes form textile wastewater by adsorption using shrimp shell. Int. J. Waste .Res. 6(2016), 1-5.
  14. H. Nadaroglu, E. Kalkan, N.Celebi, Azo dye removal from aqueous solutions using laccase-modified red mud: adsorption kinetics and isotherm studies. Annu. Res. Rev. Biol. 4(2014), 2730-2754.
  15. G. M.Walker, L. R. Weatherley, Adsorption of acid dyes on to granular activated carbon in fixed beds. Water. Res. 31(1997), 2093-2101.
  16. J. Singh, N. S. Mishra, S. Banerjee, Y, Sharma, Comparative studies of physical characteristics of raw and modified sawdust for their use as adsorbents for removal of acid dye. Bio. Res. 3(2011), 2732-2743.
  17. G. McKay, M. S. Otterburn, A. G. Sweeney, Surface mass transfer processes during color removal from effluent using silica. Water. Res. 15(1981), 327-331.
  18. L. Jayalakshmia, V. Devadoss, K. Ananthakumar, Adsorption of acid orange-7 dye onto activated carbon-produced from bentonite - a study of equilibrium adsorption isotherm. Chem Sci. Trans. 51(2013), 57-62.
  19. S. Chowdhury, P. D. Saha, Biosorption of methylene blue from aqueous solutions by a waste biomaterial: hen feathers. Appl. Water. Sci. 2 (2012), 209-219.
  20. J. Mittal, V. Thakur, A. Mittal. Batch removal of hazardous azo dye Bismark Brown R using waste material hen feather. Ecol. Eng. 60 (2013), 249-253.
  21. A. Mittal, V. Thakur, V.Gajbe. Adsorptive removal of toxic azo dye Amido Black 10B by hen feather. Environ. Sci. Pollut Res. 20(2013), 260-269.
  22. A. Mittal, V. Thakur, V. Gajbe, Evaluation of adsorption characteristics of an anionic azo dye Brilliant Yellow onto hen feathers in aqueous solutions. Environ. Sci. Pollut. Res. 19(2012), 2438-2447.
  23. A. Mittal, Use of hen feathers as potential adsorbent for the removal of a hazardous dye, Brilliant Blue FCF, from wastewater. J. Hazard. Mater. 128(2006), 233 239.
  24. M. Dhelipan, A. Arunchander, A. K. Sahu, D. Kalpana, Activated carbon from orange peels as supercapacitor electrode and catalyst support for oxygen reduction reaction in proton exchange membrane fuel cell. J. Saudi. Chem. Soc. 21(2017), 487-494.
  25. T. Santhi, S. Manonmani, T. Smitha, Removal of methyl red from aqueous solution by activated carbon prepared from the Annona squmosa seed by adsorption. Chem. Eng. Res. Bull. 14 (2010), 11-18.
  26. G. B. Oguntimein, T. Duwane. The potential use of acid treated dried sunflower seed hull as a biosorbent for the removal of textile effluent dye from aqueous solution. Int. J. Eng. Sci. 4(2014), 21-30.3]
  27. G. GrégorioCrini, P. M. Badot, Application of chitosan, a natural aminopolysaccharide, for dye removal from aqueous solutions by adsorption processes using batch studies: A review of recent literature. Prog. Polym. Sci. 33(2008), 399-447.
  28. ز. انصاری، الوان پور، ف. استوار، حذف جذبی ماده رنگزای کنگو قرمز با نانو کامپوزیت اکسید روی/خاک اره در سیستم ستونی. نشریه علمی علوم و فناوری رنگ. (1396) 11، 111-99.
  29. B. Gulay, B. Altintas, Y. A. Mehmet, Synthesis and characterization of magnetic beads containing aminated fibrous surfaces for removal of Reactive Green 19 dye: kinetics and thermodynamic parameters. J. Chem. Technol. Biotechnol. 87(2012),705-713.
  30. N. Ayawei, A.N. Ebelegi, D. Wankasi, Modelling and interpretation of adsorption isotherms. Hindawi. J. Chem. 2017(2017), 1-11.
  31. I. Langmuir, The constitution and fundamental properties of solids and liquids. Part I. Solids. J. Am. Chem. Soc. 38 (1916), 2221-2295.
  32. H. Freundlich, Uber die adsorption in losungen. Z. Phys. Chem. 57(1906), 385–470.
  33. C. Aharoni, M. Ungarish, Kinetics of activated chemisorption. Part 2. Theoretical models. J. Chem. Soc. 73(1971), 456-464.
  34. N. Rahman, Z. Abedin, M. A. Hossain, Rapid degradation of azo dyes using nano-scale zero valent iron. Am. J. Environ. Sci. 10(2014), 157-163.
  35. O. C. Elebi, C. Uzum, T. Shahwan, H. N. Erten, A radiotracer study of the adsorption behavior of aqueous Ba2+ ions on nanoparticles of zero-valent iron. J. Hazard. Mater. 148(2007), 761-767.
  36. Y. S. Ho, W. T. Chiu, C. C. Wang, Regression analysis for the sorption isotherms of basic dyes on sugarcane dust. Bioresour. Technol. 96(2005), 1285-1291.
  37. Y. S. Ho, G.McKay, Pseudo-second order model for sorption processes. Proc. Bio. Chem. 34(1999), 451-465.
  38. A. Mittal, Adsorption kinetics of removal of a toxic dye, Malachite Green, from wastewater by using hen feathers. J. Hazard. Mater. 133(2006), 196-202.
  39. V. K. Gupta, A. Mittal, L .Kurup, J. Mitta. Adsorption of a hazardous dye, erythrosine, over hen feathers. J. Colloid Interface Sci. 304(2006), 52-57.
  40. ر. تبارکی، ن. صادقی نژاد، هایده پور عجم، مطالعه حذف مواد رنگزا از مخلوط دوتایی پوست سبز فندق به عنوان پسماند کشاورزی با روش سطح پاسخ. نشریه علمی علوم و فناوری رنگ. (1399) 14، 23-13.