مطالعه حذف مواد رنگزا از مخلوط دوتایی توسط پوست سبز فندق به عنوان پسماند کشاورزی با روش سطح پاسخ

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه شیمی، دانشکده علوم پایه، دانشگاه ایلام، ایلام، ایران

2 دانشکده علوم پایه، دانشگاه ایلام، ایلام، ایران

چکیده

جذب زیستی مواد رنگزای ایندیگوکارمین و متیل نارنجی در سیستم‌های تک جزئی و دوجزئی به وسیله پوست سبز فندق با استفاده از روش سطح پاسخ بهینه شد.شرایط بهینه برای سیستم‌های دو جزئی در pHبرابر 3 و غلظت جاذبg/l 0.1 و زمان تعادل برابر 60 دقیقه به­دست آمد. در این شرایط ظرفیت جذب کلmmol/g   0.12 بود. چهار مدل ایزوترم در سیستم‌های تک جزئی و دو جزئی مقایسه شدند. ایزوترم فروندلیشو مدل سنتیک شبه درجه دوم به خوبی بر داده­های آزمایش برازش شدند. مطالعات ترمودینامیک نشان داد که فرآیند جذب زیستی خودبه‌خودی است. پوست سبز فندق به عنوان یک جاذب زیستی طبیعی، به علت ارزان بودن، در دسترس بودن و ظرفیت خوب جذب برای حذف مخلوط مواد رنگزا در ابعاد وسیع قابل استفاده است. مقایسه نتایج با دستاوردهای سایر جاذب‌ها نشان داد کهپوست سبز فندق دارای ظرفیت جذب بالاتری برای این مواد رنگزا نسبت به کیتوسان، پوست جوز برزیلی، سبوس برنج، پوست موز و پوست پرتقال است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Study of Dyes Removal from Binary System by Hazelnut Husk as Agricultural Waste by Response Surface Methodology

نویسندگان [English]

  • R. Tabaraki 1
  • N. Sadeghinejad 2
  • H. Poorajam 2
1 Department of Chemistry, Ilam University, Ilam, Iran.
2 Department of Chemistry, Ilam University, Ilam, Iran.
چکیده [English]

Biosorption of Indigo carmine and Methyl orange in single and binary systems by hazelnut husk was optimized by response surface methodology. The optimum conditions for binary system were determined as pH 3, biosorbent concentration 0.1 g/L and equilibrium time of 60 min. At this condition, total biosorption capacity was 0.12 mmol/g. Four isotherm models were compared in single and binary systems. The biosorption data were fitted very well to Freundlich isotherm and second-order kinetic model. Thermodynamic studies showed that the biosorption process was spontaneous. Hazelnut husk as a natural biosorbent can be used for scale-up purposes due to its low cost, availability and good total capacity for the removal of dyes. Comparison of results with other biosorbents shows that hazelnut husk had higher biosorption capacity with respect to chitosan, Brazil nut shell, rice husk, banana and orange peels. 

کلیدواژه‌ها [English]

  • Biosorption
  • Indigo carmine
  • Methyl Orange
  • Kinetic
  • Isotherm
V. Vimonses, B. Jin, C. W. K. Chow, Insight into removal kinetic and mechanisms of anionic dye by calcined clay materials and lime. J. Hazard. Mater.157(2010) 472-479.
T. Robinson, G. McMullan, R. Marchant, P. Nigam, Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresour. Technol. 77(2001) 247-55.
B. Volesky, Z.R. Holan, Biosorption of heavy metals. Biotechnol. Prog.11(1999), 235–250.
س. احمدی اسب‌چین‌، ح. مرادی، ر. تبارکی، مطالعه تجزیه میکروبی ماده رنگزای ایندیگوکارمین توسط باکتری گرم منفی اسینتوباکتر لووفی. نشریه علمی علوم و فناوری رنگ. (1395)10، 70-65.
آ. اسفرم، م. ر. فتحی، حذف رنگزای آنیونی مستقیم قرمز B12 از محلول‌های آبی با استفاده از جاذب کاه گندم: مطالعات ایزوترمی، سینتیکی و ترمودینامیکی. نشریه علمی علوم فناوری رنگ. (1392)7، 235-223.
 ی. حمزه، ا. آزاده، س. ایزدیار، حذف رنگزای راکتیو Remazol Black B از آب آلوده با استفاده از پسماندهای لیگنوسلولزی ساقه کلزا. نشریه علمی علوم و فناوری رنگ. (1390)5، 85-77.
M. Dogan, H. Abak, M. Alkan, Adsorption of methylene blue onto hazelnut shell: Kinetics, mechanism and activation parameters. J. Hazard. Mater.164(2009), 172-181.
C. Ozer, M. Imamoglu, Y. Turhan, F. Boysan, Removal of methylene blue from aqueous solutions using phosphoric acid activated carbon produced from hazelnut husks. Toxicol. Environm. Sci. 94(2012), 1283-1293.
R. A. Carletto, F. Chimirri, F. Bosco, F. Ferrero, Adsorption of congo red dye on hazelnut shells and degradation with Phanerochaete chrysosporium. BioResources. 3(2009), 1146-1155.
R. H. Myers, D.C. Montgomery, Response surface methodology: process and product optimization using designed experiments. 2nd ed., John Wiley & Sons, USA, 2002.
K. Y. Foo, B. H. Hameed, Insights into the modeling of adsorption isotherm systems. Chem. Eng. J. 156(2010), 2-10.
A. G. S. Prado, J. D. Torres, E. A. Faria, S. C. L. Dias, Comperative adsorption studies of indigo carmine dye on chitin and chitosan. J. Colloid Interf. Sci. 277(2004), 43-47.
U. Lakshmi, V.C. Srivastava, I.D. Mall, D.H. Lataye, Rice husk ash as an effective adsorbent: Evaluation of adsorptive characteristics for indigo carmine dye. J. Environ. Manage. 90(2009), 710-720.
S. M. Oliveira Brito, H. M. Carvalho Andrade, L. Frota Soares, R.P. Azevedo, Brazil nut shells as a new biosorbent to remove methylene blue and indigo carmine from aqueous solutions. J. Hazard. Mater. 174(2010), 84-92.
V. K. Gupta, Application of low-cost adsorbents for dye removal–a review. J. Environ. Manag. 90(2009), 2313–2342.
A. Aishah, S.T. Jalil, Adsorption of methyl orange from aqueous solution onto calcined Lapindo volcanic mud. J. Hazard. Mater. 181(2010), 755-762.
F. Deniz, S.D. Saygideger, Equilibrium, Kinetic and thermodynamic studies of Acid orange 52 dye biosorption by Paulownia tomentosa Steud leaf powder as a low cost biosorbent. Bioresour. Technol. 101(2010), 5137-5143.
L. Ayed, E. Khelifi, H. B. Jannet, H. Miladi, A. C. Cheref, S. Achour, A. Bakhrouf, Response surface methodology for decolorization of azo dye methyl orange by bacteria consortium: produced enzymes and metabolites characterization. Chem. Eng. J. 165(2010), 200-208.
H. Chen, J. Zhao, J. Wu, G. Dai, Isotherm, thermodynamic, kinetic and adsorption mechanism studies of methyl orange by surfactant modified silkworm exuviae. J. Hazard. Mater. 192(2010), 246-254.
M. Vinoth, H.Y. Lim, R. Xavier, Removal of methyl orange from solutions using Yam leaf fibers. Int. J. Chem. Technol. 2(2010), 1892-1900.
A. Srinivasan, T. Viraraghavan, Decolorization of dye wastewaters by biosorbents: a review J. Environ. Manag. 91(2010), 1915-1929