مطالعه نظری رفتار دینامیکی و الکترونی نانولوله‌های کربنی تک‌دیواره برای حذف ماده رنگزای 4-(فنیل دی آزنیل) آنیلین از محیط‌های آبی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه شیمی، واحد ورامین-پیشوا، دانشگاه آزاد اسلامی، ورامین، ایران

2 گروه شیمی، واحد اسلامشهر، دانشگاه آزاد اسلامی، اسلامشهر، ایران

3 گروه مهندسی شیمی، واحد ورامین-پیشوا، دانشگاه آزاد اسلامی، ورامین، ایران

چکیده

در این تحقیق اثرات نامستقرشدن الکترونی بر روی خواص ساختاری، الکترونی و میزان واکنش‌پذیری ماده رنگزای 4-(فنیل دی آزنیل) آنیلین در حضور نانولوله‌های کربنی تک‌دیواره زیگزاگ (5.0) با استفاده از محاسبات مکانیک کوانتومی تئوری تابع چگالی الکترون، مورد مطالعه قرار گرفت. محاسبات توابع ترمودینامیکی و فرکانس‌های ارتعاشی در فاز گازی و حلال انجام شد. تعیین رفتار دینامیکی و الکترونی نانولوله‌های کربنی در واکنش با ماده رنگزای زرد آنیلین، از طریق تحلیل فرکانس‌های ارتعاشی، مشخصه‌های ساختاری و انرژی حلال‌پوشی، میزان هدایت الکتریکی، انرژی‌های الکترونی و انرژی جذب در طی واکنش صورت گرفت. نتایج نشان داد که واکنش جذب ماده رنگزای آزو بر سطح نانولوله کربنی در فاز گازی و حلال از نظر انرژی مطلوب می‌باشد. انرژی جذب برای ساختار بهینه ماده رنگزای آزو- نانولوله کربنی در فاز گازی 3.922 - کیلوکالری بر مول و در فاز حلال 4.612- کیلوکالری بر مول، نشان داد که واکنش جذب فیزیکی است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Theoretical Study of the Dynamic and Electronic Behavior of Single-Wall Carbon Nanotubes for Removal of 4-(Phenyldiazenyl) Aniline Dye from Aqueous Mediums

نویسندگان [English]

  • F. Azarakhshi 1
  • M. Khaleghian 2
  • Sh. Shahsavari 3
1 Department of Chemistry, Varamin-Pishva Branch, IAU, Varamin, Iran
2 Department of Chemistry, Islamshahr Branch, Islamic Azad University, Islamshahr, Iran
3 Department of Chemical engineering, Varamin-Pishva Branch, IAU, Varamin, Iran
چکیده [English]

In this study the impacts of the electron delocalization on the structural and electronic properties and reactivity of 4-(Phenyldiazenyl) aniline in the reaction with (5, 0) zigzag open-end single wall carbon nanotubes (SWCNTs) was studied based on the Density Functional Theory (DFT) calculations. Calculation of the thermodynamic functions and the vibrational frequency in the gas and solvent phase was carried out. In order to determinate the dynamic and electron behavior of carbon nanotubes in reaction with yellow aniline, structural parameters and solvent energy of the reaction compounds and the total electronic energy, adsorption energies (EAd) were calculated. The results show that the reaction of adsorption of azo color on the surface of carbon nanotubes in the gas phase and solvent in terms of energy is desirable. The adsorption energy for the optimized structure of azo dye-CNT was calculated -3.953 and -4.612 (kcal/mol) in the gas and aqueous phase respectively, and results showed that the physical adsorption reaction was occurred. 

کلیدواژه‌ها [English]

  • Azo dye
  • Adsorption energy
  • Conductivity
  • Carbon nanotubes
  • Density functional theory
  1. S. R. Couto, Dye removal by immobilized fungi. Biotechnol. Adv. 27(2009), 227-235.
  2. J. W. Lee, S. P. Choi, R. Thiruvenkatachari, W. G. Shim, H. Moon, Evaluation of the performance of adsorption and coagulation processes for the maximum removal of reactive dyes. Dyes Pigm. 69(2006), 196-203.
  3. N. Mahmoodi, M. Arami, N. Yousefi, Photocatalytic degradation of triazinic ring-containing azo dye (reactive red 198) by using immobilized TiO2 photoreactor: Bench scale study. J Hazard Mater. 133(2006), 113-118.
  4. B. H. Hameed, A. Ahmad, Adsorption of reactive dye on palm-oil industry wastes: equilibrium, Kinetic and thermodynamic studies. Desalination. 247(2009), 551-560.
  5. S. T. Mostafavi, M. R. Mehrnia, A. M. Rashidi, Preparation of nanofilter from carbon nanotubes for application in virus removal from water. Desalination. 238(2009), 271-280.
  6. ف. امامی، ع. ر. تهرانی بقا، ک. قرنجیگ. بررسی عوامل مؤثر بر رنگبری یک رنگزای آزو راکتیو (C.I. Reactive Red 120) به روش فنتون. نشریه علمی پژوهشی علوم و فناوری رنگ. (1389)4، 114-105.

  7. G. M. Soares, M. T. Amorim, R. Hrdina, M. Costa-Ferreira, Studies on the biotransformation of novel diazo dyes by laccase. Process Biochem. 37(2002), 581-587.
  8. G. Crini, Non-conventional low-cost adsorbents for dye removal: A review. Bioresour Technol. 9(2006), 1061-1085.
  9. G. Mezohegyi, A. Kolodkin, U.I. Castro, C. Bengoa, F. Stuber, J. Font, A. Fabregat, A. Fortuny, Effective anaerobic decolorization of azo dye acid orange 7 in continuous up flow packed-bed reactor using biological activated carbon system. Ind. Eng. Chem. Res. 46(2007), 6788-6792.
  10. V. K. Gupta and Suhas, Application of low-cost adsorbents for dye removal–a review. J. Environ. Manage. 90(2009), 2313-2342.
  11. T. Robinson, B. Chandran, and P. Nigam, Removal of dyes from an artificial textile dye effluent by two agricultural waste residues. Environ Int. 28(2002), 29-33.
  12. B. Crittenden and W. J. Thomas, Adsorption technology & design, Elsevier Science, 1998, 87-95.
  13. S. D. Faust and O. M. Aly, Adsorption processes for water treatment, Guidford, Butterworth Scientific Ltd., 1987, 110-112.
  14. M. Suzuki, Adsorption engineering, Tokyo, Kodansha, Amsterdam, New York, Elsevier, 1990. 
  15. T. G. M. van de Ven, K. Saint-Cyr, and M. Allix, Adsorption of toluidine blue on pulp fibers. Colloids Surf A Physicochem Eng Asp. 294(2007), 1-7.
  16. T. Q. Yuan and R. C. Sun, Chapter 7.3 –Modification of straw for activated carbon preparation and application for the removal of dyes from aqueous solutions, in cereal straw as a resource for sustainable biomaterials and biofuels, ed Amsterdam: Elsevier, 2010, 239-252.
  17. Y. Matsui, N. Ando, T. Yoshida, R. Kurotobi, T. Matsushita, K. Ohno, Modeling high adsorption capacity and kinetics of organic macromolecules on super-powdered activated carbon. Water Res. 45(2011), 1720-1728.
  18. M. Toor, B. Jin, Adsorption characteristics, isotherm, kinetics, and diffusion of modified natural bentonite for removing diazo dye. Chem. Eng. J. 187(2012), 79-88.
  19. P. Gautam, D. Madathil, A. N. Brijesh Nair, Nanotechnology in Waste Water Treatment: A Review. Int. J. Chem. Technol. Res. 5(2013), 2303-2308.
  20. F. M. Machado, S. B. Fagan, I. Z. da Silva, M. J. de Andrade, Carbon nanomaterials as adsorbents for environmental and biological applications. chapter 2- carbon nanoadsorbents. In: F. M. Machado, C. P. Bergmann, (Ed). Springer International Publishing, New York City. 2015, 11-32.
  21. N. N. Nassar, Application of adsorbents for water pollution control, chapter 3-iron oxide nanoadsorbents for removal of various pollutants from wastewater, A. Bhatnagar (Ed). 2012, 81-118.
  22. C. H. Wu, K. Chao-Yin, J. Y. Wu, Adsorption of direct dyes from aqueous solutions by carbon nanotubes. J. Colloid. Interf. Sci. 327(2008), 308–315.
  23. H. Hyung, J.H. Kim, Natural organic matter (NOM) adsorption to multi-walled carbon nanotubes: effect of NOM characteristics and water quality parameters. Environ. Sci. Technol. 42(2008), 4416–4421.
  24. L. U. Chungsying, S. U. Fengsheng, Adsorption of natu-ral organic matter by carbon nanotubes. J. Hazard. Mater. 58(2007), 113-121.
  25. Y. H. Li, S.G. Wang, J. Q. Wei, X. F. Zhang, C. L. Xu, Z. K. Luan, D. H. Wu, B. Q. Wei, Competitive adsorption of Pb2+, Cu2+ and Cd2+ ions from aqueous solutions by multi walled carbon nanotubes. Carbon. 41(2003), 2787–2792.
  26. B. Pan, B. S. Xing, Adsorption mechanisms of organic chemicals on carbon nanotubes. Environ. Sci. Technol. 42(2008), 9005-9013.
  27. V. K. K. Upadhyayula, Sh. Deng, M. C. Mitchell, G. B. Smith, Application of carbon nanotube technology for removal of contaminants in drinking water: A review. J. Sci. Total. Environ. 408(2009), 1–13.
  28. D. Vairavapandian, P. Vichchulada, D. Marcus, Preparation and modification of carbon nanotubes: Review of recent advances and applications in catalysis and sensing. Anal. Chim. Acta. 626(2008), 119–129.
  29. N. Roy, R. Sengupta, K. Bhowmick Anil, Modifications of carbon for polymer composites and nanocomposites. Prog. Poly Sci. 37(2012), 781–819.
  30. D. Goran, C. Vukovi, D. Aleksandar, C. Marinkovi, Removal of cadmium from aqueous solutions by oxidized and ethylenediamine-functionalized multi-walled carbon nanotubes. Chem. Eng. J. 157(2010), 238–248.
  31. L. Chungsying, S. Fengsheng, H. Suhkai, Surface modification of carbon nanotubes for enhancing BTEX adsorption from aqueous solutions. Appl. Surf. Sci. 254(2008), 7035–7041.
  32. L. Chungsying, Ch. Huantsung, Chemical modification of multiwall carbon nanotubes for sorption of Zn2+ from aqueous solution. Chem. Eng. J. 139(2008), 462–466.
  33. A. Faraj, T. Laou, M. Harthi, A. Muataz, Modification and functionalization of multi walled carbon nanotube via ficher esrerification. Arabian. J. Sci. Eng. 35(2010), 37-48.
  34. B. Nuruzatulifah, J. Tessonnier, M. Kutty, S. B. Abd Hamid, Chemically modified carbon nanotubes (CNTs) with oxygen and sulfur containing functional groups for adsorption of mercury. 3rd International Conference on Chemical. Biological. Environ. Eng. 20(2011), 66-70.
  35. 35.K. Mishra, T. Arockiadoss, S. Ramaprabhu, Study of removal of azo dye by functionalized multi walled carbon nanotubes. Chem. Eng. J. 162(2010), 1026-1034.
  36. H. Gao, S. Zhao, X. Cheng, X. Wang, L. Zheng, Removal of anionic azo dyes from aqueous solution using magnetic polymer multi-wall carbon nanotube nanocomposite as adsorbent. Chem. Eng. J. 223(2013), 84-90.
  37. ش. آزادی، م. خواجه مهریزی، حذف مواد رنگزای راکتیو با استفاده از پرتو فرابنفش/ پراکسید هیدروژن/ نانو لوله‌های کربنی چنددیواره. مجله علمی علوم و فناوری رنگ. (1395)10، 106-97.
  38. W. Konicki, I. Pełech, E. Mijowska, I. Jasińska, Adsorption of anionic dye Direct Red 23 onto magnetic multi-walled carbon nanotubes-Fe3C nanocomposite Kinetics, equilibrium and thermodynamics. Chem. Eng. J. 210(2012), 87-95.
  39. Ch. Lu, Y. L. Chung, K. F. Chang, Adsorption thermodynamic and kinetic studies of trihalomethanes on multi-walled carbon nanotubes. J. Hazard. Mater. 138(2006), 304-310.
  40. S. Qu, F. Huang, S. Yu, G. Chen, J. Kong, Magnetic removal of dyes from aqueous solution using multi-walled carbon nanotubes filled with Fe2O3 particles. J. Hazard. Mater. 160(2008), 643-647.
  41. T. Madrakian, A. Afkhami, M. Ahmadi, H. Bagheri, Removal of some cationic dyes from aqueous solutions using magnetic-modified multi-walled carbon nanotubes. J. Hazard. Mater. 196(2011), 109-114.
  42. Y. Yao, X. Feifei, M. Chen, Z. Xu, Z. Zhu, Adsorption behavior of methylene blue on carbon nanotubes. Bioresour Technol. 101(2010), 3040-3046.
  43. E. Bazrafshan, F. Kord Mostafapour, M. Rezaie, Survey efficiency of multi-walled carbon nano tubes for removal of reactive red 198 fromaqueous environments. J. Tolooa Behdasht Yazd. 4(2013), 215-230. [Persion].
  44. S. Sobhanardakani, R. Zandipak, Evaluation of carbon nanotubes efficiency for removal of janus green dye from ganjnameh river water sample. J. Health Dev. 3(2015), 282-292.
  45. U. Hamesadeghi, F. Najafi, Gharibi F., Maleki A., Adsorption of Acid Black 1 dye from aqueous solution by amine-functionalized carbon nanotubes. J. Health. 7(2016), 643- 655.
  46. S. P. Moussavi, M. Mohammadian Fazli, Acid violet 17 Dye decolorization by multi-walled carbon nanotubes from aqueous solution. J. Hum. Environ. Health .Promot. 1(2016), 110-117.
  47. L. Ai, C. Zhang, F. Liao, Y. Wang, M. Li, L. Meng, Removal of methylene blue from aqueous solution with magnetite loaded multi-wall carbon nanotube: Kinetic, isotherm and mechanism analysis. J. Hazard. Mater. 198(2011), 282-290.
  48. M. Bagheri, M. Nasiri, M. Pavir, Investigation of reactive Blue 21 dye removal using multi-wall carbon nanotubes: Isotherm and kinetics. JAMSAT. 3(2017), 205-212.
  49. P. R. Chang, P. Zheng, B. Liu, D. P. Anderson, J. Yu, X. Ma, Characterization of magnetic soluble starch-functionalized carbon nanotubes and its application for the adsorption of the dyes. J. Hazard. Mater. 186(2011), 2144-2150.
  50. 50.J. P. Ruparelia, S. P. Duttagupta, A. K. Chatterjee, S. Mukherji, Potential of carbon nanomaterials for removal of heavy metals from water. Desalination. 232(2008), 145-156.
  51. Y. C. Chiang, P. Y. Wu, Adsorption equilibrium of sulfur hexafluoride on multi-walled carbon nanotubes. J. Hazard. Mater. 178(2010), 729-738.
  52. L. U. Chungsying, Ch. Yao-Lei, Ch. Kuan-Foo, Adsorption of trihalometanes from water with carbon nanotubes. Water Res. 39(2005), 1183-1189.
  53. S. P. Moussavi, M. H. Ehrampoush, A. H. Mahvi, M. Ahmadian, S. Rahimi, Adsorption of humic acid from aqueous solution on single-walled carbon nanotubes. Asian. J Chem. 25(2013), 5319-5324.
  54. P. Rajesh, S. Gunasekaran, A. Manikandan, Structural, spectral analysis of ambroxol using DFT methods. J. Mol. Struct. 1144(2017), 379–388.
  55. S. Sundaram, R. Jayaprakasam, M. Dhandapani, T. S. Senthil, V. N. Vijayakumar, Theoretical (DFT) and experimental studies on multiple hydrogen bonded liquid crystals comprising between aliphatic and aromatic acids. J. Mol. Liq. 243(2017), 14–21.
  56. S. C. Hernandez, F. J. Freibert, J. M. Wills, Density functional theory study of defects in unalloyed d–Pu. Scr. Mater. 134(2017), 57–60. 
  57. N. A. Keiko, T. N. Aksamentova, N. N. Chipanina, A. Ekaterina, N. V. Vchislo, 2-Alkoxy- and 2-alkylthio-2-alkenals in the reactions of electrophilic and nucleophilic addition. DFT study and NBO analysis. Tetrahedron. 69(2013), 2022–2032.
  58. A. M. Mashhadzadeh, A. M. Vahedi, M. Ardjmand, M. G. Ahangari, Investigation of heavy metal atoms adsorption onto graphene and graphdiyne surface: a density functional theory study. Superlattic. Microstruct. 100(2016), 1094–1102. 
  59. R. Abdelmajid, H. Ben El Ayouchia, L. My Rachid, S. E. Stiriba, Eerimental and theoretical study using DFT method for the competitive adsorption of two cationic dyes from wastewaters. Appl. Surf. Sci. (2017), 1-9.
  60. Y. Achour, A. Hafid, L. My Rachid, M. Khouili, DFT Investigations and experimental studies for competitive and adsorptive removal of two cationic dyes onto an eco-friendly material from aqueous media. Int. J. Environ. Res. 12(2016), 789–802
  61. M. J. Frisch, G. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Gaussian 09, revision B.09; Gaussian, Inc.: Wallingford, CT, 2009.
  62. Z. Li, H. Wan, Y. Shi, P. Ouyang, Personal experience with four kinds of chemical structure drawing software: review on chemdraw, chemwindow, isis/draw, and chemsketch. J Chem Inf. Comput Sci. 44(2004), 1886–1890.
  63. Nanotube Modeler Jc. Nanotube Modeler, JCrystalSoft, Hyperchem release 6.0. hypercube Inc., 2000.
  64. Dennington, R., Keith, T. and Millam, J. Gauss View, Version 5. Semichem Inc., Shawnee Mission. 2009.
  65. D. Glendening, J.K. Badenhoop, A.E. Reed, J.E. Carpenter, J. A. Bohmann, C.M. Morales, F. Weinhold, Theoretical Chemistry Institute, University of Wisconsin, Madison, WI, NBO version 5.G, 2004.
  66. J. M. Seminario and P. Politzer, Eds., Modern Density Function Theory, a Tool for Chemistry, Elsevier, Amsterdam. 1995.
  67. Y. Wang, X. Cheng, X. Yang, X. Yang, DFT study of solvent effects for some organic molecules using a polarizable continuum model. J. Sol. Chem. 36(2006), 869-878.
  68. Z. Bagheri, A. A. Peyghan, DFT study of NO2 adsorption on the AlN Nanocones. Compute Theor. Chem. 1008(2013), 20-26.
  69. N. L. Hadipour, A. Ahmadi Peyghan, H. Soleymanabadi, Theoretical study on the Al-doped ZnO nanoclusters for CO chemical sensors. J. Phys. Chem. C. 119(2015), 6398-6404.
  70. F. Azarakhshi, D. Nori-Shargh, H. Attar, N. Masnabadi, H. Yahyaei, N. Mousavi and E. Boggs, Conformational behaviours of 2-substituted cyclohexanones: A complete basis set, hybrid-DFT study and NBO interpretation. Mol. Simul. 37(2011), 1207-1220.
  71. F. Azarakhshi, D. Nori-Shargh, N. Masnabadi, H. Yahyaei, N. Mousavi, Conformational behaviors of 2-substituted cyclohexanone oximes: An AB initio, hybrid DFT study, and NBO interpretation. Phosphorus Sulfur Silicon Relat Elem. 187(2012), 276-293.
  72. N. Masnabadi, A. Taghva Manesh, F. Azarakhshi, Ab Initio calculations of the conformational preferences of 1,3-oxathiane s-oxide and its analogs containing s and se atoms-evidence for stereoelectronic interactions associated with the anomeric effects. Phosphorus. Sulfur. Silicon. Relat. Elem. 188(2013), 1053-1063.
  73. N. Masnabadi, D. Nori-Shargh, F. Azarakhshi, H. Zamani Ganji, M. Abbasi, A. Kasaei, Hybrid-DFT, MO study and NBO interpretation of conformational behaviors of 2-halo-1,3-dioxanes and their dithiane and diselenane analogs. Phosphorus Sulfur Silicon Relat Elem. 187(2012), 305-320.
  74. P. K. Chattaraj, A. Poddar, Molecular Reactivity in the Ground and Excited Electronic States through Density-Dependent Local and Global Reactivity Parameters. J. Phys. Chem. A. 103(1999), 8691-8699.
  75. D. A. Prystupa, A. Anderson, B. H. Torrie, Raman and infrared study of solid benzyl alcohol. J .Raman .Sectors. 25(1994), 175-182.
  76. R. G. Pearson, R. A. Donnelly, M. Levy, W. E. Palke, Electronegativity, the Density functional viewpoint. J. Chem. Phys. 68(1978), 3801-3807.
  77. N. Sundaraganesan, G. Elango, C. Meganathan, B. Karthikeyan, M. Kurt, Molecular structure, vibrational spectra and HOMO, LUMO analysis of 4-piperidone by density functional theory and ab initio Hartree–Fock calculations. J. Mole. Simul. 35(2009), 705-713.
  78. X. Blase, A. Rubio, S. G. Louie and M. L. Cohen, Stability and band gap constancy of boron nitride nanotubes. Europhys Lett. 28(1994), 335-340.
  79. J. Beheshtian, A. A. Peyghan, Z. Bagheri, Detection of phosgene by Sc-doped BN nanotubes: A DFT study, Sens. Actuator. B: Chem. 172(2012), 846-852.
  80. J. Beheshtian, Z. Bagheri, M. Kamfiroozi, A. Ahmadi, A comparative study on the B12N12, Al12N12, B12P12 and Al12P12 fullerene-like cages. J. Mol. Model. 18(2012), 2653-2658.
  81. A. A. Peyghan, H. Soleymanabadi, Z. Bagheri, Theoretical study of carbonyl sulfide adsorption on Ag-doped SiC nanotubes. J. Iranian .Chem .Soc. 12(2015), 1071-1076.
  82. E. Vessally, F. Behmagham, B. Massuomi, A. Hosseinian, K. Nejati, Selective detection of cyanogen halides by BN nanocluster: a DFT study. J .Mol. Model. 23(2017), 138-146.