حذف عامل رنگزا از پساب به کمک فوتوکاتالیزور آناتاز تثبیت شده بر پایه متاکائولن

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشکده مهندسی شیمی، دانشگاه صنعتی ارومیه، ارومیه، ایران

چکیده

استفاده از فرآیندهای فوتوکاتالیستی یکی از بهترین روش‌های حذف آلاینده‌های آلی از پساب‌های صنعتی است. از دیدگاه مهندسی، جداسازی کاتالیزور پودری از پساب تصفیه شده، اهمیت ویژه‌ای دارد. در مقاله حاضر، به منظور رفع مشکل جداسازی و استفاده مجدد از فوتوکاتالیست، از روش سل-ژل برای ایجاد پوشش‌ سطحی دی­اکسید تیتانیم بر پایه‌های متاکائولن شکل داده شده به روش اکستروژن، استفاده شده و عملکرد بستر در حذف متیلن آبی، تحت تابش نور خورشید، توسط روش طیف‌سنجی فرابنفش- مرئی مورد بررسی قرار گرفته است. به منظور مقایسه نحوه ایجاد پوشش دی­اکسید تیتانیم بر پایه‌ها، دو نوع اتصال پلیمری مطالعه شده و همچنین بازدهی و سینتیک فرآیند فوتوکاتالیستی پایه­ها با پودر سنتز شده دی­اکسید تیتانیم مورد مقایسه قرار گرفته است. از روش­های مختلف شامل پراش اشعه ایکس و میکروسکوپ الکترونی روبشی نشر میدانی برای مشخصه‌یابی نگهدارنده قبل و بعد از انجام عملیات پوشش‌دهی استفاده شده است.­ نتایج حاصل نشان دهنده امکان اتصال مناسب دی­اکسید تیتانیم بر پایه متاکائولن با استفاده از روش سل-ژل بوده و پلیمر 3- آمینو پروپیل تری اتوکسی سیلان در مقایسه با متاکریلیک اسید در آرایش و جایگیری مناسب آناتاز بر روی پایه متاکائولن عملکرد مطلوب‌تری را از خود نشان داده است به طوری که حدود 65% از متیلن آبی در مدت 60 دقیقه با استفاده از این نمونه، تخریب شده است.

کلیدواژه‌ها


عنوان مقاله [English]

Dye Degradation by Anatase Coated on Meta-kaolin Support

نویسندگان [English]

  • P. Kazemi
  • Sh. Salem
Faculty of Chemical Engineering, Urmia University of Technology
چکیده [English]

Photocatalytic process is one of the best methods for degradation of organic pollutants from wastewater. The separation of photocatalyst from the treated wastewater is of great importance from engineering point of view. In this article, the anatase synthesized by sol-gel method was coated on meta-kaolin support through the polymeric binders. The photocatalytic activity of fabricated packed beds was evaluated by degradation of wastewater contaminated by methylene blue under solar irradiation using UV-Vis spectroscopy. Two polymeric binders employed to coat titanium dioxide on extruded ceramic supports. Moreover, the dye degradation kinetics in the presence of packed beds and anatase powder were studied to understand the role of support on wastewater treatment. The structure of support was identified by XRD and FESEM before and after photocatalyst coating. The obtained results showed that the 3-(Aminopropyl) triethoxysilane is favorable to be applied as a binder in comparison to methacrylic acid. Approximately, 65% of methylene blue is degraded during 60 minutes.

کلیدواژه‌ها [English]

  • photocatalyst
  • Meta-kaolin support
  • Sol-Gel
  • binder
  • degradation
  • Methylene blue
  1. R. Zhou, M. P. Srinivasan, Photocatalysis in a packed bed: Degradation of organic dyes by immobilized silver nanoparticles. Chem. Eng. 3 (2015) 609–616.
  2. R. Kant, Textile dyeing industry an environmental hazard. Nat. Sci. 4 (2012), 22–26.
  3. ن. م. محمودی، م. آرامی، ک. قرنجیگ، ف. نورمحمدیان. رنگبری و معدنی شدن رنگزای بازیک با استفاده از فرآیند نانوفوتوکاتالیز: مطالعه در مقیاس پایلوت. نشریه علمی پژوهشی علوم و فناوری رنگ. (1386)1، 6-1.
  4. آ. اله قلیان، ع. مهری‌زاد، پ. غربانی، جذب سطحی رنگزای آبی متیلن از محلول‌های آبی بر روی نانو TiO2 عامل‌دار شده. نشریه علمی پژوهشی علوم و فناوری رنگ. (1394)9، 43-35.
  5. N. M. Mahmoodi, Z. Mokhtari-Shourijeh, Preparation of polyacrylonitrile–Titania electrospun nanofiber and its photocatalytic dye degradation ability. Prog. Color Colorants Coat. 10 (2017), 23-30.
  6. M. L. Satuf, M. J. Pierrestegui, L. Rossini, R. J. Brandi, O. M. Alfano, Kinetic modeling of azo dyes photocatalytic degradation in aqueous TiO2 suspensions. Toxicity and biodegradability evaluation. Catal. Today. 161 (2011), 121–126.
  7. A. Dhanya, K. Aparna, Synthesis and evaluation of TiO2/Chitosan based hydrogel for the adsorptional photocatalytic degradation of azo and anthraquinone dye under UV light irradiation. Procedia Technol. 24 (2016), 611- 618.
  8. H. R. Ebrahimi Afarani, Preparation of metal catalysts on granule glass for degradation of textile dyes as environmental contaminants. World Appl. Sci. J. 3(2008) 738-741.
  9. A. Mehrizad, P. Gharbani, Removal of methylene blue from aqueous solution using nano-TiO2/UV process: optimization by response surface methodology. Prog. Color Colorants Coat. 9(2016), 135-143.
  10. A. Mohammadi, A. Aliakbarzadeh Karimi, H. Fallah Moafi, Adsorption and photocatalytic properties of surface-modified TiO2 nanoparticles for methyl orange removal from aqueous solutions. Prog. Color Colorants Coat. 9(2016), 249-260.
  11. R. Andreozzi, V. Caprio, A. Insola, R. Marotta, Advanced oxidation processes (AOP) for water purification and recovery. Catal. Today. 53 (1999), 51–59.
  12. S. M. Miranda, F. V. S. Lopes, C. Rodrigues-Silva, S. D. S. Martins, A. M. T. Silva, J. L. Faria, R. A. R. Boaventura, V. J. P. Vilar, Solar photocatalytic gas-phase degradation of n-decane- a comparative study using cellulose acetate monoliths coated with P25 or sol-gel TiO2 films. J. Environ. Sci. Pollut. Res. 22(2015), 820-832.
  13. M. L. Satuf, M .J. Pierrestegui, L. Rossini, R. J. Brandi, O. M. Alfano, Kinetic modeling of azo dyes photocatalytic degradation in aqueous TiO2 suspensions: toxicity and biodegradability evaluation. Catal. Today. 161 (2011) 121–126.
  14. S. Al-Qaradawi, S.R. Salman, Photocatalytic degradation of methyl orange as a model compound. J. Photochem. Photobiol. A: Chem. 148 (2002) 161–168.
  15. S. W. Yao, H. P. Kuo, Photocatalytic degradation of toluene on SiO2/TiO2 photocatalyst in a fluidized bed reactor. Procedia Eng. 102 (2015), 1254-1260.
  16. م. زرگران، ن. آزادوار. مروری بر پوشش‌های فوتوکاتالیست تصفیه کننده هوا. نشریه مطالعات در دنیای رنگ. (1394)5، 84-75.
  17. L. X. Pinho, J. Azevedo, S. M. Miranda, J. Angelo, A. Mendes, V. J. P. Vilar, V. Vasconcelos, R. A. R. Boaventura, Oxidation of microcystin-lr and cylindrospermopsin by heterogeneous photocatalysis using a tubular photoreactor packed with different TiO2 coated supports. Chem. Eng. J. 266(2015), 100-111.
  18. R. L. Pozzo, J. L. Giombi, M. A. Baltanas, A. E. Cassanto, The performance in a fluidized bed reactor of photocatalysts immobilized onto inert supports. Catal. Today. 62 (2000) 175-187.
  19. S. M. Hashemi, Kh. Badii, Sh. Abdolreza, Study of immobilization of nano-TiO2 for environmental aspects on glass by different resin families. Prog. Color Colorants Coat. 4(2011), 1-6.
  20. S. Mohammadi-Aghdam, M. E. Olya, Degradation of C. I. basic blue 41 using modified TiO2 nanocomposite in a rectangular semibatch photoreactor. Prog. Color Colorants Coat. 8(2015), 47-57.
  21. ف. اوشنی، ر. مرندی، س. رسولی. روش های تهیه پوشش‌های نانوساختاری TiO2 در فرآیند فوتوکاتالیزوری راکتورهای ثابت. نشریه مطالعات در دنیای رنگ. (1390)1، 18-11.
  22. J. C. Ireland, P. Klostermann, E. W. Rice, R. M. Clark, Inactivation of escherichia coli by titanium dioxide photocatalytic oxidation. Appl. Environ. Microbiol. 59(5) (1993) 1668.
  23. K. Hofstadler, R. Bauer, S. Novalic, G. Heisler, New reactor design for photocatalytic wastewater treatment with TiO2 immobilized on fused-silica glass fibers: photomineralization of 4-chlorophenol. Environ. Sci. Technol. 28 (1994), 670-674.
  24. R. van Grieken, J. Aguado, M. J. Lopex-Munoz, J. Marugan, “Synthesis of size-controlled silica-supported TiO2 photocatalysts. J. Photochem. Photobiol. A Chem. 148(2002), 315-322.
  25. Z. Ding, X. Hu, G. Q. Lu, P. L. Yue, P. F. Greenfield, Novel silica gel supported TiO2 photocatalyst synthesized by CVD Method. Langmuir, 16(2000), 6216-6222.
  26. S. Karino, J. Hojo, Synthesis and characterization of TiO2-coated SiO2 particles by hydrolysis of titanium alkoxide in alcohol solvents. J. Ceram. Soc. Jpn. 118 (2010) 591-596.
  27. E. Carpio, P. Zuniga, S. Ponce, J. Solis, J. Rodriguez, W. Estrada, Photocatalytic degradation of phenol using TiO2 nanocrystals supported on activated carbon. J. Mol. Catal. A Chem. 228 (2005), 293-298.
  28. Y. Li, X. Li, J. Li, J. Yin, Photocatalytic degradation of methyl orange in a sparged tube reactor with TiO2-coated activated carbon composites. Catal. Commun. 6 (2005), 650-655.
  29. Y. H. Hsien, C. F. Chang, Y. H. Chen, S. Cheng, Photodegradation of aromatic pollutants in water over TiO2 supported on molecular sieves. Appl. Catal. B Environ. 31 (2001), 241-249.
  30. K. Holmberg, A. Matthews, Coatings Tribology, properties, mechanisms, techniques and applications in surface engineering. Tribol. Interface Eng Ser. 2(2009), 9-12.
  31. J. R. Pierce, Theory of design of electronic beams, D.Van Nostrand Company Inc., New York, New York (1954).
  32. A. C. Pierre, Introduction to sol-gel processing, Springer Science+Business Media, New York, 1st edition. 1998.
  33. L. E. Scriven, Physics and application of dip coating and spin coating. Mat. Res. Soc. Symp. Proc. 121(1988).
  34. F. Pishbin1, L. Cordero-Arias, S. Cabanas-Polo, A. R. Boccaccini, Bioactive polymere-calcium phosphate composite coatings by electrophoretic deposition. Surf. Coat. Modification Metallic Biomater. 12 (2015), 359-377.
  35. G. E. Kim, M. Brochu, Thermal spray nanostructured ceramic and metal-matrix composite coatings. Anti-Abras. Nanocoat. 19(2015), 481-511.
  36. K. Scheurell, E. Kemnitz, P. Garcia-Juan, J. Eicher, B. Lintner, J. Hegmann, R. Jahn, T. Hofmann, P. Lobmann, Porous MgF2 antireflective λ/4 films prepared by sol–gel processing: comparison of synthesis approaches. Sol-Gel Sci. Technol. 76(2015), 82–89.
  37. R. Nagarjuna, S. Roy, R. Ganesan, Polymerizable sol-gel precursor mediated synthesis of TiO2 supported zeolite-4A and its photodegradation of methylene blue. Microporous Mesoporous Mater. 211 (2015) 1-8.
  38. R. Nagarjuna, S. Challagulla, N. Alla, R. Ganesan, S. Roy, Synthesis and characterization of reduced-graphene oxide/TiO2/Zeolite-4A: A bifunctional nano composite for abatement of methylene blue. J. Mater. Design. 86 (2015), 621-626.
  39. X. Rong, F. Qiu, C. Zhang, L. Fu, Y. Wang, D. Yang, Preparation, characterization and photocatalytic application of TiO2–graphene photocatalyst under visible light irradiation. Ceram. Int.41 (2015) 2502-2511.
  40. A. Sandoval, C. Hernandez-Ventura, T. E. Klimova, Titanate nanotubes for removal of methylene blue dye by combined adsorption and photocatalysis. J. Fuel. 198 (2017), 22-30. 
  41. N. Setthaya, P. Chindaprasirt, S. Yin, K. Pimraksa, TiO2-zeolite photocatalysts made of metakaolin and rice husk ash for removal of methylene blue dye. J. Powder Technol. 313 (2017), 417-426.
  42. M. Rezaei, S. Salem, Photocatalytic activity enhancement of anatase–graphene nanocomposite for methylene removal: degradation and kinetics. Spectrochim. Acta Part A. 167 (2016) 41–49.
  43. S. Lagergren, About the theory of so-called adsorption of soluble substances, Kungliga Svenska Vetenskapsakademiens Handlingar, 24(1898), 1-39
  44. Y. S. Ho, G. McKay, Pseudo-second order model for sorption processes. Process Biochem. 34 (1999) 451-465.