Photocatalytic Removal of Azo Dye Acid Red 14 from Water By Magnetic Nanocomposite Tio2/Fe3o4/Cnt

Document Type : Original Article

Authors

Civil and Environmental Eng. Faculty, Tarbiat Modares University

Abstract

Acid red 14 is an azo dye which is used widely in textile industry and due to its high consumption, is a serious environmental hazard so that in recent years, a lot of research has been done on the photocatalytic removal of azo dyes from water with nanocomposites. In this research, TiO2/Fe3O4/CNT nanocomposite was synthesized with the sonochemical method and the photocatalytic removal of acid red 14 dye was investigated in a batch reactor by OFAT method. The morphology and structure of the nanocomposite were characterized by FESEM and EDS analysis. The optimum efficiency of 96.53 for AR14 was achieved under following conditions: dye concentration of 50 mg/L, nanocomposite concentration of 0.5 gr/L, Dissolved oxygen concentration of 7.4 mg/L, pH= 7, 120 W/m2 irradiation intensity and the reaction time 6 hours. Also, the removal of photocatalytic dyes by TiO2/Fe3O4 nanocomposite showed TiO2/Fe3O4/CNT nanocomposites had better performance in dye removal than TiO2/Fe3O4 nanocomposite. It was also found that the dye removal mechanism with a regression coefficient of 0.9597 had the most overlap with the pseudo first-order reaction.

Keywords


  1. M. A. Rauf, S. S. Ashraf, Fundamental principles and application of heterogeneous photocatalytic degradation of dyes in solution. Chem. Eng. J. 151(2009), 10-18.
  2. S. Şen, G. N. Demirer, Anaerobic treatment of real textile wastewater with a fluidized bed reactor. Water Res. 37(2003), 1868-1878.
  3. K. Balapure, N. Bhatt, D. Madamwar, Mineralization of reactive azo dyes present in simulated textile waste water using down flow microaerophilic fixed film bioreactor. Bioresour. Technol. 175(2015), 1-7.
  4. A. B. D. Santos, M. P. de Madrid, A. J. Stams, J. B. Van Lier, F. J. Cervantes, Azo dye reduction by mesophilic and thermophilic anaerobic consortia. Biotechnol. Progr. 21(2005), 1140-1145.
  5. M. Carotenuto, G. Lofrano, A. Siciliano, F. Aliberti, M. Guida, TiO2 photocatalytic degradation of caffeine and ecotoxicological assessment of oxidationby products. Glob. Nest J. 16 (2014), 265-275.
  6. Q. Zhou, Z. Fang, J. Li, M. Wang, Applications of TiO2 nanotube arrays in environmental and energy fields: A review. Microporous Mesoporous Mater. 202(2015), 22-35.
  7. I. Udom, M. K. Ram, E. K. Stefanakos, A. F. Hepp, D. Y. Goswami, One dimensional-ZnO nanostructures: synthesis, properties and environmental applications. Mater. Sci. Semicond. Process. 16(2013), 2070-2083.
  8. J. Wang, J. Yang, X. Li, D. Wang, B. Wei, H. Song, S. Fu, Preparation and photocatalytic properties of magnetically reusable Fe3O4@ZnO core/shell nanoparticles. Physica E. 75(2016), 66-71.
  9. S. Linley, T. Leshuk, F. X. Gu, Magnetically separable water treatment technologies and their role in future advanced water treatment: A patent review. Clean–Soil, Air, Water. 41(2013), 1152-1156.
  10. Y. R. Yao, W. Z. Huang, H. Zhou, Y. F. Zheng, X. C. Song, Self-assembly of dandelion-like Fe3O4@C@BiOCl magnetic nanocomposites with excellent solar-driven photocatalytic properties. J. Nanopart. Res. 16(2014), 1-9.‏
  11. C. Karunakaran, S. SakthiRaadha, P. Gomathisankar, Photocatalytic and bactericidal activities of hydrothermally and sono-chemically prepared Fe2O3–SnO2 nanoparticles. Mater. Sci. Semicond. Process. 16(2013), 818-824.
  12. A. Fisli, R. Saridewi, S. H. Dewi, J. Gunlazuardi, Preparation and characterization of Fe3O4/TiO2 composites by hetero-agglomeration. Adv. Mater. Res. 626(2013), 131-137
  13. S. Mortazavi-Derazkola, M. Salavati-Niasari, M. P. Mazhari, H. Khojasteh, M. Hamadanian, S. Bagheri, Magnetically separable Fe3O4@SiO2@TiO2 nanostructures supported by neodymium (III): Fabrication and enhanced photocatalytic activity for degradation of organic pollution. J. Mater. Sci. Mater. Electron. 28(2017), 14271–14281.
  14. L. Zhang, Z. Wu, I. Chen, L, Zhang, X. Li, H. Xu, H. Wang, G. Zhu, Preparation of magnetic Fe3O4/TiO2/Ag composite microspheres with enhanced photocatalytic activity. Solid State Sci. 52(2016), 42-48.‏
  15. Y. Liu, J. F. Wan, C. T. Liu, Y. B. Li, Fabrication of magnetic Fe3O4/C/TiO2 composites with nanotube structure and enhanced photocatalytic activity. Mater. Sci. Technol. 32 (2016), 786-793.
  16. ز. دستجردی، ا. م. اعرابی، م. ش آفارانی، ا. قاسمی، سنتز رنگدانه­های مغناطیسی نانوذره­ای Fe3O4-CuO به روش هم­رسوبی. نشریه علمی پژوهشی علوم و فناوری رنگ. (1396)11، 287-295.
  17. M. Ramadhan, A. R. Pradipta, E. S. Kunarti, Synthesis of Fe3O4/TiO2-Co nanocomposite as model of photocatalyst with magnetic properties. Mater. Sci. Forum, 901(2017), 14-19
  18. B. O. Ahmed, G. Al Bedry, Y. Ibrahim, N. Eassa, Preparation of high quality TiO2 nanoparticles using TiCl4. J. Basic Appl. Sci. 2(2017), 205-212.
  19. Clavel, Guylhaine. Magnetic impurities in nanostructured materials. PhD diss., Universidade de Aveiro (Portugal), 2009.
  20. D. A. Martin, practical guide to machine vision lighting. Midwest Sales and Support Manager, Adv Illum 2007, 1-3.
  21. K. Woan, G. Pyrgiotakis, W. Sigmund, Photocatalytic carbon‐nanotube–TiO2 composites. Adv. Mater. 21 (2009), 2233-2239.
  22. P. S. Harikumar, L. Joseph, A. Dhanya, Photocatalytic degradation of textile dyes by hydrogel supported titanium dioxide nanoparticles. J. Environ. Eng. Ecol. Sci. 2 (2013), 2.
  23. M. Bhaumik, A. Maity, V. K.  Gupta, Synthesis and characterization of Fe0/TiO2 nano-composites for ultrasound assisted enhanced catalytic degradation of reactive black 5 in aqueous solutions. J. Colloid Interface Sci. 506(2017), 403-414.
  24. M. Karimi-Nazarabad, E. K. Goharshadi, Highly efficient photocatalytic and photoelectrocatalytic activity of solar light driven WO3/gC3N4 nanocomposite. Sol. Energy Mater. Sol. Cells. 160(2017), 484-493.
  25. Y. Ku, S. J. Shiu, H. C. Wu, Decomposition of dimethyl phthalate in aqueous solution by UV–LED/TiO2 process under periodic illumination. J. Photochem. Photobiol. A. 332(2017), 299-305.
  26. M. Mohamadizad, Photocatalytic dye removal from aqueous solution using polyaniline/TiO2 and polyaniline/graphene/ nanocomposite under visible light irradiation. M.Sc. Thesis, Tarbiat Modares University, 2015.
  27. Y. E. Moon, G. Jung, J. Yun, H. I. Kim, Poly (vinyl alcohol)/poly (acrylic acid)/TiO2/graphene oxide nanocomposite hydrogels for pH-sensitive photocatalytic degradation of organic pollutants. Mater. Sci. Eng. B. 178(2013), 1097-1103.
  28. N. Khorshidi, S. Abidini khorami, M. E. Olya, F. Motiee, Sinthesis of CuO-ZnO nanocomposite and its photocatalytic activity. Prog. Color Colorants Coat. 9(2016), 207-215.
  29. J. Ma, K. Wang, L. Li, T. Zhang, Y. Kong, S. Komarneni, Visible-light photocatalytic decolorization of orange II on Cu2O/ZnO nanocomposites. Ceram. Int. 41(2015), 2050-2056.
  30. T. P. Shende, B. A. Bhanvase, A. P. Rathod, D. V. Pinjari, S. H. Sonawane, Sonochemical synthesis of graphene-Ce-TiO2 and graphene-Fe-TiO2 ternary hybrid photocatalyst nanocomposite and its application in degradation of crystal violet dye. Ultrason. Sonochem. 41(2018), 582-589.
  31. E. M. Alrobayi, A. M. Algubili, A. M. Aljeboree, A. F. Alkaim, F. H. Hussein, Investigation of photocatalytic removal and photonic efficiency of maxilon blue dye GRL in the presence of TiO2 nanoparticles. Part. Sci. Technol. 35(2016), 14-20.
  32. A. Pirkarami, M. E. Olya, S. R. Farshid, UV/Ni–TiO2 nanocatalyst for electrochemical removal of dyes considering operating costs. Water Resour. Ind. 5(2014), 9-20.
  33. H. Zhu, R. Jiang, L. Xiao, Y. Chang, Y. Guan, X. Li, G. Zeng, Photocatalytic decolorization and degradation of Congo red on innovative cross linked chitosan/nano-CdS composite catalyst under visible light irradiation. J. Hazard. Mater. 169(2009), 933-940.
  34. A. Sharma, P. N. Sharma, Photocatalytic degradation of O-nitrophenol using silver impregnated TiO2. Int. J. Environ. Eng. Manag. 4(2013), 359-368.
  35. C. Tang, V. Chen, The photocatalytic degradation of reactive black 5 using TiO2/UV in an annular photoreactor. Water Res. 38(2004), 2775-2781.
  36. A. E. Cassano, O. M. Alfano, Reaction engineering of suspended solid heterogeneous photocatalytic reactors. Catalysis today. 58(2000), 167-197.
  37. Q. Li, S. Mahendra, D. Y. Lyon, L. Brunet, M. V. Liga, D. Li, P. J. Alvarez, Antimicrobial nanomaterials for water disinfection and microbial control: Potential applications and implications. Water Res. 42(2008), 4591-4602.‏
  38. C. H. Chiou, C. Y. Wu, R. S. Juang,. Influence of operating parameters on photocatalytic degradation of phenol in UV/TiO2 process. Chem. Eng. J. 139(2008), 322-329.
  39. A. Wang, J. Qu, H. Liu, J. Ge, Degradation of azo dye Acid Red 14 in aqueous solution by electro-kinetic and electro-oxidation process. Chemosphere. 55(2004), 1189-1196.
  40. W. Jiang, X. Zhang, X. Gong, F. Yan, Z. Zhang, Sonochemical synthesis and characterization of magnetic separable Fe3O4–TiO2 nanocomposites and their catalytic properties. Int. J. Smart Nano Mater. 1(2010), 278-287.‏
  41. K. Azad, P. Gajanan, Photodegradation of Methyl Orange in Aqueous Solution by the Visible Light Active Co: La: TiO2 Nanocomposite. Chem Sci J. 164(2017), DOI: 10.4172/2150-3494.1000164.