حس‌گر زیستی تهیه شده از نانوالیاف هیبریدی کیتوسان/نانولوله کربنی عامل‌دار به منظور شناسایی نیکوتین

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی پزشکی، واحد تهران جنوب، دانشگاه آزاد اسلامی، تهران، ایران، صندوق پستی: 1و2و3 : 1955764955

2 گروه مهندسی پزشکی، واحد تهران جنوب، دانشگاه آزاد اسلامی، تهران، ایران

چکیده

در این تحقیق نیکوتین (NIC) با استفاده از الکترود اصلاح شده کربن شیشه‌ای (GC) به روش ولتامتری چرخه‌ای (CV) شناسایی شده است. سطح الکترود GC با استفاده از روش الکتروریسی و تولید نانو الیاف هیبریدی اصلاح شده است. در این راستا، نانو الیاف هیبریدی از پخش کردن نانولوله کربنی با عامل کربوکسیله (MWCNT-COOH) به عنوان جزء معدنی در بستر پلیمر CS به‌عنوان جزء آلی با شکل منحصر به فرد و ناحیه سطح بالا تولید شده است. میانگین قطر منفذ با افزایش نانولوله کربنی عامل‌دار به‌دلیل افزایش قطر نانوالیاف افزایش یافته است. خواص الکتروشیمیایی NIC با الکترود GC-CS/MWCNT-COOH مورد بررسی قرار گرفت. NIC با الکترود CS/MWCNT-COOH که یک فرآیند کنترل شده با 2 پروتون و 2 الکترون بود کاهش غیرقابل برگشت داشت. سیگنال اکسید شدن در پتانسیل پایین‌تر و جریان‌ بالاتر برای NIC با الکترود اصلاح شده در مقایسه با الکترود GC به دست آمده است که نشان می‌دهد نانولیف حاوی نانولوله کربنی سرعت انتقال الکترون را افزایش می‌دهد. تحت شرایط بهینه، CV اکسید شدن NIC را در 0.82 ولت در محلول بافرفسفات 7.4=pH نشان می‌دهد. منحنی کالیبراسیون خطی محدوده 0.1 تا 100میکرو مولار غلظت NIC (0.9987 ) با حد تشخیص 90 نانومولار را نشان می‌دهد. برای 100 تشخیص موازی 10 میکرومولار NIC برای 5 بار تکرار، 97.2 درصد با انحراف معیار استاندارد 4.08 توانست پایداری خود را نسبت به چرخه اول حفظ نماید که نشان می‌دهد الکترود CS/MWCNT-COOH دارای تکرارپذیری و پایداری عالی است.

کلیدواژه‌ها


عنوان مقاله [English]

Preparation of Bio-Sensor with Hybrid Nanofibers of Chitosan/ Functional Carbon Nanotubes for the Sensing of Nicotine

نویسندگان [English]

  • Abolfazl Mirani 1
  • Laleh Maleknia 1
  • Amir Amirabadi 2
1 Department of Biomedical Engineering, South Tehran Branch, Islamic Azad University, P.O. Box: 1955764955:1,2,3, Tehran, Iran
2 Department of Biomedical Engineering, South Tehran Branch, Islamic Azad University, Tehran Iran
چکیده [English]

In this paper, Nicotine (NIC) was detected by cyclic voltammetry (CV) using a modified glassy carbon electrode (GC). To do this, the surface of the GC electrode was modified by hybrid Nanofiber obtained from electrospinning method. Hybrid nanofibers were produced through the dispersion of carboxylated Multi-walled carbon nanotube (MWCNT-COOH) as an inorganic component in the CS polymer matrix as an organic component. The nanofibers showed unique morpHology and high surface area value. With the increase of functionalized carbon nanotube content in the nanofibers, the mean pore diameter and the average nanofiber diameter increased. The electrochemical properties of nanofibers toward the sensing of NIC were investigated by cyclic voltammetry method. NIC was irreversibly reduced with the use of CS/MWCNT-COOH electrode, a controlled process with 2 protons and 2 electrons. An oxidation signal at lower potential with higher current was obtained for nicotine with the use of polymer-modified electrode compared to glassy carbon electrode.

کلیدواژه‌ها [English]

  • Nicotine
  • Electrochemical Properties
  • Nanofiber
  • Chitosan
  • functionalized Multi-walled carbon nanotube
  1. Kunze, E. Groman, U. Kunze, Tobacco consumption and tobacco-related diseases: gender differences with a comparison between two European countries. JMHG. 1(2004), 83-87.
  2. Bhatnagar, L. P. Whitsel, M. J. Blaha, M. D. Huffman, S. Krishan-Sarin, J. Maa, N. Rigotti, R. M. Robertson, J. J. Warner, A. H. Association, New and emerging tobacco products and the nicotine endgame: the role of robust regulation and comprehensive tobacco control and prevention: a presidential advisory from the American Heart Association. Circulation. 139(2019), e937-e958.
  3. Ghobadi, M. Arami, H. Bahrami, Modification of multi walled carbon nanotubes and its application for removal of Direct Blue 86. J. Color Sci. Tech. 2013(2013), 103-112.
  4. Sharifi Golru, M. Attar, B. Ramezanzadeh, An Investigation of Electrochemical and Surface Characteristics of Aluminium Alloy-1050 Surface Prepared by Different Methods. J Color Scie Technol. 8(2014), 129-136.
  5. L. Benowitz, Clinical pharmacology of inhaled drugs of abuse: implications in understanding nicotine dependence. NIDA Res Monogr. 99(1990), 12-29.
  6. R. Picciotto, M. Zoli, Neuroprotection via nAChRs: the role of nAChRs in neurodegenerative disorders such as Alzheimer’s and Parkinson’s disease. Front Biosci. 13(2008), 492-504.
  7. M. Hossain, S. M. Salehuddin, Analytical determination of nicotine in tobacco leaves by gas chromatography–mass spectrometry. Arab. J. Chem. 6(2013), 275-278.
  8. M. Clayton, C. A. Vas, T. T. Bui, A. F. Drake, K. McAdam, Spectroscopic studies on nicotine and nornicotine in the UV region. Chirality. 25(2013), 288-293.
  9. Karthika, P. Karuppasamy, S. Selvarajan, A. Suganthi, M. Rajarajan, Electrochemical sensing of nicotine using CuWO4 decorated reduced graphene oxide immobilized glassy carbon electrode. Ultrasonics sonochem. 55(2019), 196-206.
  10. M. Mullett, E. P. Lai, B. Sellergren, Determination of nicotine in tobacco by molecularly imprinted solid phase extraction with differential pulsed elution. Analytical communications. 36(1999), 217-220.
  11. Geto, M. Amare, M. Tessema, S. Admassie, Voltammetric Determination of Nicotine at Poly (4‐Amino‐3‐Hydroxynaphthalene Sulfonic Acid)‐Modified Glassy Carbon Electrode. Electroanalysis. 24(2012), 659-665.
  12. Suffredini, d. M. Santos, D. De Souza, L. Codognoto, P. Homem‐de‐Mello, K. Honório, A. Da Silva, S. Machado, L. Avaca, Electrochemical behavior of nicotine studied by voltammetric techniques at boron‐doped diamond electrodes. Analytical letters. 38(2005), 1587-1599.
  13. Xiong, Y. Zhao, P. Liu, X. Zhang, S. Wang, Electrochemical properties and the determination of nicotine at a multi-walled carbon nanotubes modified glassy carbon electrode. Microchimica Acta. 168(2010), 31-36.
  14. Goodarzi, M. Maghrebi, A. F. Zavareh, Z.-B. Mokhtari-Hosseini, B. Ebrahimi-Hoseinzadeh, A. H. Zarmi, M. Barshan-Tashnizi, Evaluation of nicotine sensor based on copper nanoparticles and carbon nanotubes. J NANOSTRUCTURE CHEM. 5(2015), 237-242.
  15. Lin, Y. Sun, D. Xu, Y. Li, S. Liu, Z. Xie, Sensitive capillary electrophoretic profiling of nicotine and nornicotine in mushrooms with amperometric detection. Electrophoresis. 34(2013), 2033-2040.
  16. -S. Wang, T.-H. Li, W.-L. Jia, H.-Y. Xu, Highly selective and sensitive determination of dopamine using a Nafion/carbon nanotubes coated poly (3-methylthiophene) modified electrode. Biosens. 22(2006), 664-669.
  17. -M. Chen, S.-V. Chen, The bioelectrocatalytic properties of cytochrome C by direct electrochemistry on DNA film modified electrode. Electrochimica acta. 48(2003), 513-529.
  18. Geng, O.-H. Kwon, J. Jang, Electrospinning of chitosan dissolved in concentrated acetic acid solution. Biomaterials. 26(2005), 5427-5432.
  19. Yarandpour, A. Rashidi, R. Khajavi, N. Eslahi, M. Yazdanshenas, Preparation of Polyacrylic Acid (PAA)/Dextran Nanofibres Modified with Aniline to the Removal of Metal (Pb) from Aqueous Solutions. J Color Sci. Tech. 14(2020), 255-271.
  20. Y. Yeo, J. R. Friend, Electrospinning carbon nanotube polymer composite nanofibers. J Exp Nanosci. 1(2006), 177-209.
  21. Rafiei, Optimization and Production of Polyacrylonitrile Based Activated Carbon Nanofibers for Dye Wastewater Treatment. J Color Sci. Tech. 14(2020), 281-294.
  22. C. Fard, M. Mirjalili, F. Najafi, Hydroxylated α-Fe2O3 nanofiber: optimization of synthesis conditions, anionic dyes adsorption kinetic, isotherm and error analysis. J Taiwan Inst Chem Eng. 70(2017), 188-199.
  23. F. Melo-Silveira, G. P. Fidelis, M. S. S. P. Costa, C. B. S. Telles, N. Dantas-Santos, S. d. O. Elias, V. B. Ribeiro, A. L. Barth, A. J. Macedo, E. L. Leite, In vitro antioxidant, anticoagulant and antimicrobial activity and in inhibition of cancer cell proliferation by xylan extracted from corn cobs. Int. J. Mol. Sci. 13(2012), 409-426.
  24. F. Wolkers, A. E. Oliver, F. Tablin, J. H. Crowe, A Fourier-transform infrared spectroscopy study of sugar glasses. Carbohydr. 339(2004), 1077-1085.
  25. Silva, C. Dore, C. Marques, M. Nascimento, N. Benevides, H. Rocha, S. Chavante, E. Leite, Anticoagulant activity, paw edema and pleurisy induced carrageenan: Action of major types of commercial carrageenans. Carbohydr. 79(2010), 26-33.
  26. -H. Lim, S. M. Hudson, Synthesis and antimicrobial activity of a water-soluble chitosan derivative with a fiber-reactive group. Carbohydr. 339(2004), 313-319.
  27. B. Vino, P. Ramasamy, V. Shanmugam, A. Shanmugam, Extraction, characterization and in vitro antioxidative potential of chitosan and sulfated chitosan from Cuttlebone of Sepia aculeata Orbigny, 1848. Asian Pac J. Trop Biomed. 2(2012), S334-S341.
  28. Song, H. Yu, M. Zhang, Y. Yang, G. Zhang, Physicochemical properties and antioxidant activity of chitosan from the blowfly Chrysomya megacephala larvae. Int. J. Biol. Macromol. 60(2013), 347-354.
  29. Yao, W. Chen, H. Wang, H. Liu, K. Yao, P. Sun, H. Lin, A study on cytocompatible poly (chitosan-gL-lactic acid). Polymer. 44(2003), 6435-6441.
  30. Ke, W. Guan, C. Tang, W. Guan, D. Zeng, F. Deng, Covalent functionalization of multiwalled carbon nanotubes with a low molecular weight chitosan. Biomacromolecules. 8(2007), 322-326.
  31. Wu, W. Feng, Y. Feng, Q. Liu, X. Xu, T. Sekino, A. Fujii, M. Ozaki, Preparation and characterization of chitosan-grafted multiwalled carbon nanotubes and their electrochemical properties. Carbon. 45(2007), 1212-1218.
  32. Liang, B. Chen, A review on biomedical applications of single-walled carbon nanotubes. Curr. Med. Chem. 17(2010), 10-24.
  33. Alekseev, A. Efimov, K. Lu, J. Loos, Three‐dimensional electrical property mapping with nanometer resolution. Advanced Materials. 21(2009), 4915-4919.
  34. Kumar, M. Castro, J. Lu, J.-F. Feller, Conducting Polymer nanoComposites (CPC): Nanocharacterisation of layer by layer sprayed PMMA-CNT vapour sensors by Atomic force Microscopy in current Sensing Mode (CS-AFM). OPL. 1143(2008),
  35. Egerton, P. Li,M. Malac, Radiation damage in the TEM and SEM. Micron. 35(2004), 399-409.
  36. Almasian, M. E. Olya, N. M. Mahmoodi, E. Zarinabadi, Grafting of polyamidoamine dendrimer on polyacrylonitrile nanofiber surface: synthesis and optimization of anionic dye removal process by response surface methodology method. Desalin. Water Treat. 147(2019), 343-361.
  37. Salari, M. Kohantorabi, Facile template-free synthesis of new α-MnO 2 nanorod/silver iodide p–n junction nanocomposites with high photocatalytic performance. New J. Chem. 44(2020), 7401-7411.
  38. Karthika, P. Karuppasamy, S. Selvarajan, A. Suganthi, M. Rajarajan, Electrochemical sensing of nicotine using CuWO4 decorated reduced graphene oxide immobilized glassy carbon electrode. Ultrasonics sonoch. 55(2019), 196-206.
  39. Levent, Y. Yardim, Z. Senturk, Voltammetric behavior of nicotine at pencil graphite electrode and its enhancement determination in the presence of anionic surfactant. Electrochimica Acta. 55(2009), 190-195.
  40. De Toledo, M. Santos, K. Honório, A. Da Silva, E. Cavalheiro, L. Mazo, Use of graphite polyurethane composite electrode for imipramine oxidation—mechanism proposal and electroanalytical determination. Analytical letters. 39(2006), 507-520.
  41. S. Lin, J. S. Wang, C. H. Lai, Electrochemiluminescent determination of nicotine based on tri (2, 2′-bipyridyl) ruthenium (II) complex through flow injection analysis. Electrochimica acta. 53(2008), 7775-7780.
  42. I. Seeman, H. V. Secor, D. W. Armstrong, K. D. Timmons, T. J. Ward, Enantiomeric resolution and chiral recognition of racemic nicotine and nicotine analogs by. beta.-cyclodextrin complexation. Structure-enantiomeric resolution relationships in host-guest interactions. Analytical chemistry. 60(1988), 2120-2127.
  43. Ikeda, S. Tsuda, Y. Shirasu, Metabolic induction of the hepatic cytochrome P450 system by chlorfenvinphos in rats. Toxicol. Sci. 17(1991), 361-367.
  44. J. Bard,L. R. Faulkner, Fundamentals and applications. Electrochemical methods. 2(2001), 580-632.
  45. E. C. Figueiredo, D. M. de Oliveira, M. E. P. B. de Siqueira, M. A. Z. Arruda, On-line molecularly imprinted solid-phase extraction for the selective spectrophotometric determination of nicotine in the urine of smokers. Analytica Chimica Acta. 635(2009), 102-107