حذف رنگزای کاتیونی بازیک بنفش16 (BV16) از محلول¬¬های آبی با استفاده از دندریمر پلی¬آمیدوآمین نسل¬¬¬2 (PAMAM-G2)





کد مقاله:
JCST-20-08-2016-1674

مولفین:
جعفر عظیم وند: دانشگاه پیام نور تهران - دانشکده شیمی
خدیجه دیده بان: دانشگاه پیام نور تهران - دانشکده شیمی
سید احمد میرشکرایی: دانشگاه پیام نور تهران - دانشکده شیمی
غلامرضا رجبی: دانشگاه پیام نور تهران - دانشکده شیمی


چکیده مقاله:

در این مطالعه دندریمر پلی آمیدوآمین نسل 2 (PAMAM-G2) به عنوان جاذب برای رنگبری پساب حاوی ماده رنگزای بازیک بنفش 16 ((BV16 استفاده شد. به منظور مطالعه ویژگی های رنگبری جاذب ، عوامل موثر بر فرایند رنگبری همچون pH، مقدار جاذب، غلظت ماده رنگزا و زمان تماس بررسی گردید . با افزایش pH ، زمان تماس و غلظت اولیه رنگزا، ظرفیت جذب qe نیز افزایش یافت؛ در حالی که مقدار جاذب، با ظرفیت جذب رابطه معکوس داشت؛ که می توان آن را به کاهش رقابت در میان مولکول های رنگ برای اتصال به جاذب نسبت داد. شرایط بهینه برای جذب رنگزا در pH برابر 8/11 ، مقدار جاذب gr.L-1 6/0 ، غلظت رنگزای mg.L-1 40 و زمان تماس min 100 تعیین شد. از میان عوامل بررسی شده، pH بیشترین تاثیر را در ظرفیت جذب و درصد حذف رنگزا فراهم نمود؛ به گونه ای که با تغییر pH از 8 به 8/11 درصد حذف رنگزا از mg.g-168 به mg.g-1 102 افزایش یافت. ایزوترم حالت تعادل با مدل های ایزوترمی لانگمویر، فروندلیچ و تمکین مطابقت داده شد. نتایج تطابق خوبی با مدل ایزوترمی لانگمویر با ضریب همبستگی 994/0 نشان داده و بیشترین ظرفیت جذب در شرایط بهیه mg.g-138/114 ارزیابی گردید. برای بررسی سینتیک جذب سطحی داده ها، از سه مدل شبه درجه اول ، شبه درجه دوم و نفوذ بین ذره ای استفاده شد. سینتیک جذب سطحی در فرآیند جذب از مدل های شبه درجه دوم و نفوذ درون ذره ای تبعیت نمود؛ که با مقدار تجربی آن بسیار نزدیک بوده و نشان دهنده ی توانایی کنترل فرآیند جذب به وسیله عامل شیمیایی غلظت و نفوذ درون ذره ای است. نتایج نشان دهنده ی بازده و ظرفیت جذب مناسب در حذف رنگزای BV16 به وسیله ی دندریمری PAMAM-G2 می باشد.


Article's English abstract:

Abstract: In this study, poly(amidoamine) G-2 dendrimer (PAMAM-G2) were applied as adsorbents for the removal of the dye from the effluent containing dye basic violet 16 (BV16). With increasing pH, contact time and initial dye concentration, increased absorption capacity qe., While the amount of adsorbent, the adsorption capacity was inversely., Which can be attributed to reduced competition among dye molecules to bind to the sorbent. The optimum conditions for dye absorption was determined at pH 11.8, the amount of absorbent 0.6 gr.L-1, dye concentration 40 mg.L-1 and contact time 100 min. Among the factors studied, pH has provided the greatest impact on the absorption capacity and the percentage of dye removal. So that by changing the pH from 8 to 11.8, increased the percentage of dye removal from 68 mg.gr-1 to 102 mg.gr-1. Isotherm equilibrium was consistent with Langmuir isotherm models, Freundlich and Temkin. The results show good agreement with Langmuir isotherm model with a correlation coefficient 0.994 and the maximum absorption capacity was evaluated at optimal conditions mg.g-1 114.38. For adsorption kinetics data, Was used three models Pseudo-first-order, pseudo-second-order and influence between the particles. The sorption kinetics in the absorption process followed the pseudo-second-order and intraparticle diffusion models., that Very close to the experimental value, And represents the ability to control the absorption process is by chemical agent concentration and intraparticle diffusion. The results indicate the proper efficiency and absorption capacity in removal of BV16 by the PAMAM-G2 dendrimer.


کلید واژگان:
رنگبری، دندریمر پلی آمیدوآمین نسل 2، بازیک بنفش 16، ایزوترم جذب، سینتیک جذب.

English Keywords:
Dye removal, Poly(amidoamine)G-2 dendrimer, Basic violet 16, Adsorption isotherm, Adsorption kinetic

منابع:

English References:
[1] Ben Manaa Marwa, Schmaltz Bruno, Bouaicha Mongi, François Tran Van, Ben Lamine Abdelmottaleb , Modeling of adsorption isotherms of dye N719 on titanium oxide using the grand canonical ensemble in statistical physics for dye sensitized solar cells, Solar Energy, 135(2016),177-187. [2] Daskalaki VM, Timotheatou ES, Katsaounis A, Kalderis D. Degradation of Reactive Red 120 using hydrogen peroxide in subcritical water. Desalination. 274(2011),200-205. [3] Merouani S, Hamdaoui O, Saoudi F, Chiha M. Sonochemical degradation of Rhodamine B inaqueous phase: Effects of additives. Chemical Engineering Journal. 158(2010)550-557. [4] Arica MY, Bayramoglu G. Biosorption of Reactive Red -120 dye from aqueous solution by native and modified fungus biomass preparations of Lentinus sajor-caju. Journalof Hazardous Materials.149(2007),499-507. [5]Qingwen Lin, Mengfan Gao, Jiali Chang, Hongzhu Ma , Adsorption properties of crosslinking carboxymethyl cellulose grafting dimethyldiallylammonium chloride for cationic and anionic dyes , Carbohydrate Polymers, 151(2016), 283-294. [6] Celekli A, Yavuzatmaca M, Bozkurt H. Kinetic and equilibrium studies on the adsorption of reactive red 120 from aqueous solution on Spirogyra majuscula. Chemical Engineering Journal. 152(2009),139-145. [7] Vaishakh Nair, R. Vinu , Peroxide-assisted microwave activation of pyrolysis char for adsorption of dyes from wastewater, Bioresource Technology, 216(2016), 511-519. [8] Li Liu, Jun Zhang, Ren-Cheng Tang , Adsorption and functional properties of natural lac dye on chitosan fiber,Reactive and Functional Polymers, 73(2013), 1559-1566 [9] Asadollah Mohammadi , Ali Aliakbarzadeh Karimi , Hadi Fallah Moafi, Adsorption and Photocatalytic Properties of Surface-Modified TiO2 nanoparticles for Methyl Orange Removal from Aqueous Solutions, Progress in Color, Colorants and Coatings, 4(2015), 248-258 [10] Saied Abedini khorrami , Mohammad Ebrahim Olya , Fereshteh Motiee , Nasrin Khorshidi, Synthesis of CuO-ZnO Nanocomposite and Its Photocatalytic Activity, Progress in Color, Colorants and Coatings, 9(2016), 207-215 [11] Niyaz Mohammad Mahmoodi , Sajjad Soltani-Gordefaramarzi, Dye Removal from Single and Quaternary Systems Using Surface Modified Nanoparticle: Isotherm and Kinetics, Progress in Color, Colorants and Coatings, 9(2016), 85-97 [12] Alireza Ziapour , Mostafa Sefidrooh , Mohamadreza Moadeli, Adsorption of Remazol Black B Dye from Aqueous Solution Using Bagasse, Progress in Color, Colorants and Coatings, 9(2016), 99-108 [13] Mohammad Khajeh mehrizi , Abolfazl Mahmudi, Decoloration of Disperse blue 56 by Using of UV/H2O2/MWCNT’s, Progress in Color, Colorants and Coatings, 8(2015), 123-133 [14] Elham Radaei , Mohammadreza Alavi moghaddam , Mokhtar Arami, Adsorption of Reactive Blue 19 onto activated carbon prepared from pomegranate residual by phosphoric acid activation: Kinetic, Isotherm and Thermodynamic studies, Progress in Color, Colorants and Coatings, 7(2014), 245-257 [15] Amin Salem , Mohsen Saghapour, Effect of activation factors on adsorption of cationic dye, methylene blue, by activated bentonite, Progress in Color, Colorants and Coatings, 6(2013), 97-107 [16] Xinbo Wu, Dingcai Wu, Ruowen Fu, Wei Zeng , Preparation of carbon aerogels with different pore structures and their fixed bed adsorption properties for dye removal,Dyes and Pigments, 95(2012), 689-694. [17] Ali Akbar Zolriasatein, Mohammad Esmail Yazdanshenas ,Ramin Khajavi c, Abosaeed Rashidi, The application of poly(amidoamine) dendrimers for modification of jute yarns: Preparation and dyeing properties, Journal of Saudi Chemical Society, 19 (2015), 155–162. [18] Yuzhong Niu, Rongjun Qu, Changmei Sun, Chunhua Wang, Hou Chen, Chunnuan Ji, Ying Zhang, Xia Shao, Fanling Bu , Adsorption of Pb(II) from aqueous solution by silica-gel supported hyperbranched polyamidoamine dendrimers, Journal of Hazardous Materials, 244(2013), 276-286. [19] Xiaole Qi, Yuchao Fan, Huan He, Zhenghong Wu, Hyaluronic acid-grafted polyamidoamine dendrimers enable long circulation and active tumor targeting simultaneously, Carbohydrate Polymers, 126(2015), 231-239. [20] P.F. Méndez, S. Sepulveda, J. Manr?quez, F.J. Rodr?guez, E. Bustos, A. Rodr?guez, Luis A.Godinez, Growth dynamics of polyamidoamine dendrimer encapsulated CdS nanoparticles , Journal of Crystal Growth, 361(2012), Pages 108-113 [21] Eun Ji Park, Hoon Cho, Si Wouk Kim, Dong Hee Na , Chromatographic methods for characterization of poly(ethylene glycol)-modified polyamidoamine dendrimers, Analytical Biochemistry, 449(2014), 42-44. [22] Feliu Torres Neus, Marie V. Walter, Maria I. Monta?ez, Andrea Kunzmann, Anders Hult, Andreas Nystr?m, Michael Malkoch, Bengt Fadeel , Biocompatibility of polyester dendrimers in comparison to polyamidoamine dendrimers, Toxicology Letters, 211(2012), 203-204. [23] Mohammad Dodangeh, Kamaladin Gharanjig, Mokhtar Arami, Saeid Atashrouz , Surface alteration of polyamide fibers by polyamidoamine dendrimers and optimization of treatment process using neural network towards improving their dyeing properties, Dyes and Pigments, 111(2014), 30-38. [24] Yong Zhang, Mei-Ying Xu, Tie-Kun Jiang, Wei-Zhe Huang, Jiang-Yu Wu , Low generational polyamidoamine dendrimers to enhance the solubility of folic acid: A “dendritic effect” investigation, Chinese Chemical Letters, 25(2014), 815-818. [25] Ying Ge, Yujun Guo, Weidong Qin , Polyamidoamine dendrimers as sweeping agent and stationary phase for rapid and sensitive open-tubular capillary electrophoretic determination of heavy metal ions, Talanta, 121(2014), 50-55. [26] B. A. Fil1, M. T. Yilmaz, S. Bayar1 and M. T. Elkoca, Investigation of adsorption of the dyestrazon red violet 3rn(basic violet 16)on montmorilonite clay, Brazilian Journal of Chemical Engineering, 31(2014),171-182. [27] Fanchiang J-M, Tseng D-H, Degradation of anthraquinone dye C.I, Reactive Blue 19 in aqueous solution by ozonation, Chemosphere, 77(2009),214-221. [28] Madrakian T, Afkhami A, Ahmadi M, Adsorption and kinetic studies of seven different organic dyes onto magnetite nanoparticlesloaded tea waste and removal of them from wastewater samples, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy,99(2012),102-109. [29] Kushwaha AK, Gupta N, ChattopadhyayaMC, Removal of cationic methylen e blue and malachite green dyes from aqueous solution by waste materia ls of Daucus carota. Journal of Saudi Chemical Society, 1(2011),15-26. [30] Pavan FA, Mazzocato AC, Gushikem Y, Removal of methylene blue dye from aqueous solutions by adsorption using yellow passion fruit peel as adsorbent, Bioresource Technology, 99(2008), 3162-3165. [31] Gong R, Li M, Yang C, Sun Y, Chen J, Removal of cationic dyes from aqueous solution by adsorption on peanut hull, Journal of Hazardous Materials, 121(2005),247-250. [32] M.H EZ-H, N A, Fast and efficie nt removal of Reactive Black 5 from aqueous solution by a combined method of ultrasound and sorption process, Ultrasonics Sonochemistry,15(2007), 433-437. [33] Khattri SD, Singh MK, Removal of malachite green from dye wastewater using neem sawdust by adsorption, Journal of Hazardous Materials,167(2009),1089-1094. [34] Caner N, Kiran I, Ilhan S, Iscen CF, Isotherm and kinetic studies of Burazol Blue ED dye biosorption by dried anaerobic sludge. Journal of Hazardous Materials, 165(2009),279-284. [35] Mahmoud MS, Farah JY, Farrag TE, Enhanced removal of Methylene Blue by electrocoag ulation using iron electrodes,Egyptian Journal of Petroleum,22 (2013),211-216. [36] Gil A, Assis FCC, Albeniz S, Korili SA, Removal of dyes from wastewaters by adsorption on pillared clays, Chemical Engineering Journal,168(2011),1032-1040. [37] Siddique M, Farooq R, Khalid A, Farooq A, Mahmood Q, Farooq U, et al, Thermal-pressure-mediated hydrolysis of Reactive Blue 19 dye, Journal of Hazardous Materials,172(2009),1007-1012. [38] R?o AId, Fern?ndez J, Molina J, Bonastre J, Cases F, Electrochemical treatment of a synthetic wastewater containing a sulphonated azo dye, Determination of naphthalenesulphonic compounds produced as main by-products, Desalination. 273(2011),428-435. [39] G.Vijayakumar , R.Tamilarasan , M. Dharmendirakumar, Adsorption, Kinetic, Equilibrium and Thermodynamic studies on the removal of basic dye Rhodamine-B from aqueous solut ion by the use of natural adsorbent perlite, J. Mater. Environ. Sci. 3 (2012) 157-170. [40] Lijuan Wang and Jian Li, Removal of Methylene Blue from Aqueous Solution by Adsorption onto Crofton Weed Stalk, BioResources 8(2013), 2521-2536. [41] N. A. OLADOJA, Studies on the Sorption of Basic Dye by Rubber (Hevea brasiliensis) Seed Shel, Turkish J. Eng. Env. Sci.32 (2008) , 143 – 152. [42] A.Basker, P.S. Syed Shabudeen, P. Vignesh Kumarand A.P.Shekhar, Sequestration of Basic dye from textile industry waste water using agro-wastes and modeling with anova, Rasayan.j.chem, 7(2014), 64-74. [43] Hossein Ghasemzadeh and Sahel Shidran, Methyl Violet Dye Absorption from Aqueous Solutions by Nanomagnetic Hydrogels Based on ?-Carrageenan and Acrylic Acid , Iran. J. Polym. Sci. Technol. (Persian),. 29(2016) , 365-376. [44] Maral Pishgar, Mohammad Esmaeil Yazdanshenas, Mohammad Hosein Ghorbani, Removal of Basic Blue 159 from Aqueous Solution Using Banana Peel as a Low-Cost Adsorbent, Journal of Applied Chemical Research, 7(2013), 51-62 . [45] ShirsathS.R., PatilA.P., BhanvaseB.A., and SonawaneS.H., Ultrasonically Prepared Poly(acrylamide)-Kaolin Composite Hydrogel for Removal of Crystal Violet Dye from Wastewater ,J. Environ. Chem. Eng., 629, 1-11, 2015.



فایل مقاله
تعداد بازدید: 237
تعداد دریافت فایل مقاله : 25

ورود به سامانه نشریه
شناسنامه ی نشریه
صاحب امتياز:
موسسه پژوهشي
علوم و فناوري رنگ و پوشش
مدير مسوول:
پروفسور زهرا رنجبر
سردبير:
پروفسور زهرا رنجبر
مدير اجرايي:
دکتر فرهاد عامري
شاپا چاپي:
8779 - 1735
شاپا الکترونيکي:
2169 - 2383
دسترسی سریع
آخرین شماره های نشریه
آمارهای وبگاه
تعداد بازدید:238

کاربران حاضر:56